Human African trypanosomiasis is among the World Health Organization's designated neglected tropical diseases. Repurposing strategies are often employed in academic drug discovery programs due to financial limitations, and in this instance, we used human kinase inhibitor chemotypes to identify substituted 4-aminoazaindoles, exemplified by . Structure-activity and structure-property relationship analysis, informed by cheminformatics, identified as a potent inhibitor of growth.
View Article and Find Full Text PDFBarley (1,3;1,4)-β-d-glucanase is believed to have evolved from an ancestral monocotyledon (1,3)-β-d-glucanase, enabling the hydrolysis of (1,3;1,4)-β-d-glucans in the cell walls of leaves and germinating grains. In the present study, we investigated the substrate specificities of variants of the barley enzymes (1,3;1,4)-β-d-glucan endohydrolase [(1,3;1,4)-β-d-glucanase] isoenzyme EII (EII) and (1,3)-β-d-glucan endohydrolase [(1,3)-β-d-glucanase] isoenzyme GII (GII) obtained by protein segment hybridization and site-directed mutagenesis. Using protein segment hybridization, we obtained three variants of EII in which the substrate specificity was that of a (1,3)-β-d-glucanase and one variant that hydrolyzed both (1,3)-β-d-glucans and (1,3;1,4)-β-d-glucans; the wild-type enzyme hydrolyzed only (1,3;1,4)-β-d-glucans.
View Article and Find Full Text PDFMost cell wall and secreted β-glucans are synthesised by the CAZy Glycosyltransferase 2 family (www.cazy.org), with different members catalysing the formation of (1,4)-β-, (1,3)-β-, or both (1,4)- and (1,3)-β-glucosidic linkages.
View Article and Find Full Text PDFThe processivity of cellulose synthesis in bacterial cellulose synthase (CESA) was investigated using molecular dynamics simulations and the hybrid quantum mechanics and molecular mechanics approach. Our results suggested that cellulose synthesis in bacterial CESA can be initiated with HO molecules. The chain length or degree of polymerization (DOP) of the product cellulose is related to the affinity of the cellulose chain to the transmembrane tunnel of the enzyme.
View Article and Find Full Text PDFDetermining the shape of plant cellulose microfibrils is critical for understanding plant cell wall molecular architecture and conversion of cellulose into biofuels. Only recently has it been determined that these cellulose microfibrils are composed of 18 cellulose chains rather than 36 polymers arranged in a diamond-shaped pattern. This study uses density functional theory calculations to model three possible habits for the 18-chain microfibril and compares the calculated energies, structures, C NMR chemical shifts and WAXS diffractograms of each to evaluate which shape is most probable.
View Article and Find Full Text PDFThere is increasing experimental and computational evidence that cellulose microfibrils can exist in a stable twisted form. In this study, atomistic molecular dynamics (MD) simulations are performed to investigate the importance of intrachain hydrogen bonds on the twist in cellulose microfibrils. We systematically enforce or block the formation of these intrachain hydrogen bonds by either constraining dihedral angles or manipulating charges.
View Article and Find Full Text PDFPlant Physiol
July 2015
Phylogenetic analyses of cellulose synthase (CesA) and cellulose synthase-like (Csl) families from the cellulose synthase gene superfamily were used to reconstruct their evolutionary origins and selection histories. Counterintuitively, genes encoding primary cell wall CesAs have undergone extensive expansion and diversification following an ancestral duplication from a secondary cell wall-associated CesA. Selection pressure across entire CesA and Csl clades appears to be low, but this conceals considerable variation within individual clades.
View Article and Find Full Text PDFThe question of how many chains an elementary cellulose microfibril contains is critical to understanding the molecular mechanism(s) of cellulose biosynthesis and regulation. Given the hexagonal nature of the cellulose synthase rosette, it is assumed that the number of chains must be a multiple of six. We present molecular dynamics simulations on three different models of Iβ cellulose microfibrils, 18, 24, and 36 chains, to investigate their structure and dynamics in a hydrated environment.
View Article and Find Full Text PDFX-ray crystallography studies have identified that most cyclic inhibitors of HIV protease (including cyclic ureas) bind in a symmetric manner, however some cyclic inhibitors, such as cyclic sulfamides, bind in a non-symmetric manner. This raises the question as to whether it is possible for cyclic sulfamides to bind symmetrically and conversely for cyclic ureas to bind non-symmetrically. Herein we report an analysis of the conformational preference of cyclic ureas and sulfamides both free in solution and bound to HIV protease, including an investigation of the effect of branching.
View Article and Find Full Text PDFThe molecular mechanics-Poisson-Boltzmann surface area (MM-PBSA) and MM-generalized-Born surface area (MM-GBSA) approaches are commonly used in molecular modeling and drug design. Four critical aspects of these approaches have been investigated for their effect on calculated binding energies: (1) the atomic partial charge method used to parameterize the ligand force field, (2) the method used to calculate the solvation free energy, (3) inclusion of entropy estimates, and (4) the protonation state of the ligand. HIV protease has been used as a test case with six structurally different inhibitors covering a broad range of binding strength to assess the effect of these four parameters.
View Article and Find Full Text PDFJ Chem Inf Model
May 2011
Resistance remains a major issue with regards to HIV-1 protease, despite the availability of numerous HIV-1 protease inhibitors and copious amounts of structural and binding data. In an effort to improve our understanding of how HIV-1 protease is able to "outsmart" new drugs, we have investigated the flexibility of HIV-1 protease and in particular how it adapts to different structural stresses. Our analysis has highlighted the effects of space group on the variability between structures of HIV-1 protease and suggests that consideration of multiple structures and appropriate consideration of different conformations of the Ile50 residue is necessary in any structural analysis.
View Article and Find Full Text PDFJ Chem Theory Comput
October 2009
A novel docking protocol using a long, all atom molecular dynamics (MD) simulation, in an explicit solvent medium, without using any distance constraints is presented. This MD docking protocol is able to dock ligands, based on the C-terminal domain (CTD) of RNA polymerase II, into the tryptophan-tryptophan (WW) domain of Pin1. In this docking process, a significant loop-bending event occurs in order to encircle the ligand into its solvent exposed binding site, which cannot be simulated using current protocols.
View Article and Find Full Text PDF