Publications by authors named "Colin M MacRae"

An Al–Cu–Li aerospace alloy has been investigated to determine the order in which corrosion at different types of sites occurs in AA2099-T83. Specifically, the sequence of galvanic attack on intermetallic (IM) particles and other sites of AA2099-T83 was determined as a function of time, in 0.1 M NaCl, through the use of scanning electron microscopy and electron backscatter diffraction characterization techniques.

View Article and Find Full Text PDF

Samples from the sphalerite-dominated zone of a seafloor massive sulfide chimney, the Satanic Mills Chimney of the PACMANUS hydrothermal field, have been investigated to determine the internal macrostructure and microstructure of this zone, the phases present, and the distribution of metals. A combination of electron probe microanalysis, electron backscattered diffraction, and x-ray diffraction has been used. At the macroscale, this zone of the chimney wall is heavily porous and is comprised primarily of sphalerite, enclosing minor chalcopyrite, pyrite, and wurtzite.

View Article and Find Full Text PDF

Accurate elemental quantification of materials by X-ray detection techniques in electron microscopes or microprobes can only be carried out if the appropriate mass absorption coefficients (MACs) are known. With continuous advancements in experimental techniques, databases of MACs must be expanded in order to account for new detection limits. Soft X-ray emission spectroscopy (SXES) is a characterization technique that can detect emitted X-rays whose energies are in the range of 10 eV to 2 keV by using a varied-line-spaced grating.

View Article and Find Full Text PDF

Alluvial mineral sands rank among the most complex subjects for mineral characterization due to the diverse range of minerals present in the sediments, which may collectively contain a daunting number of elements (>20) in major or minor concentrations (>1 wt%). To comprehensively characterize the phase abundance and chemistry of these complex mineral specimens, a method was developed using hyperspectral x-ray and cathodoluminescence mapping in an electron probe microanalyser (EPMA), coupled with automated cluster analysis and quantitative analysis of clustered x-ray spectra. This method proved successful in identifying and quantifying over 40 phases from mineral sand specimens, including unexpected phases with low modal abundance (<0.

View Article and Find Full Text PDF

Hyperspectral soft X-ray emission (SXE) and cathodoluminescence (CL) spectrometry have been used to investigate a carbonaceous-rich geological deposit to understand the crystallinity and morphology of the carbon and the associated quartz. Panchromatic CL maps show both the growth of the quartz and the evidence of recrystallization. A fitted CL map reveals the distribution of Ti4+ within the grains and shows subtle growth zoning, together with radiation halos from 238U decay.

View Article and Find Full Text PDF

Dental caries, erosion and hypersensitivity are major public health problems. SnF is used widely in oral care products to help prevent/treat these conditions. Casein phosphopeptide-stabilised amorphous calcium phosphate nanocomplexes (CPP-ACP) are a biomimetic nanotechnology of salivary phosphopeptide-ACP complexes that deliver bioavailable calcium and phosphate ions to promote dental remineralisation (repair).

View Article and Find Full Text PDF

Electron and proton microprobes, along with electron backscatter diffraction (EBSD) analysis were used to study the microstructure of the contemporary Al-Cu-Li alloy AA2099-T8. In electron probe microanalysis, wavelength and energy dispersive X-ray spectrometry were used in parallel with soft X-ray emission spectroscopy (SXES) to characterize the microstructure of AA2099-T8. The electron microprobe was able to identify five unique compositions for constituent intermetallic (IM) particles containing combinations of Al, Cu, Fe, Mn, and Zn.

View Article and Find Full Text PDF

Transverse microradiography (TMR) and electron probe microanalysis (EPMA) are commonly used for characterizing dental tissues. TMR utilizes an approximately monochromatic X-ray beam to determine the mass attenuation of the sample, which is converted to volume percent mineral (vol%min). An EPMA stimulates the emission of characteristic X-rays from a variable volume of sample (dependent on density) to provide compositional information.

View Article and Find Full Text PDF

Hyperspectral cathodoluminescence mapping is used to examine a carbonado diamond. The hyperspectral dataset is examined using a data clustering algorithm to interpret the range of spectral shapes present within the dataset, which are related to defects within the structure of the diamond. The cathodoluminescence response from this particular carbonado diamond can be attributed to a small number of defect types: N-V0, N2V, N3V, a 3.

View Article and Find Full Text PDF

This article concerns application of cathodoluminescence (CL) spectroscopy to volcanic quartz and its utility in assessing variation in trace quantities of Ti within individual crystals. CL spectroscopy provides useful details of intragrain compositional variability and structure but generally limited quantitative information on element abundances. Microbeam analysis can provide such information but is time-consuming and costly, particularly if large numbers of analyses are required.

View Article and Find Full Text PDF

A method for the analysis of cathodoluminescence spectra is described that enables quantitative trace-element-level distributions to be mapped within minerals and materials. Cathodoluminescence intensities for a number of rare earth elements are determined by Gaussian peak fitting, and these intensities show positive correlation with independently measured concentrations down to parts per million levels. The ability to quantify cathodoluminescence spectra provides a powerful tool to determine both trace element abundances and charge state, while major elemental levels can be determined using more traditional X-ray spectrometry.

View Article and Find Full Text PDF

A luminescence database for minerals and materials has been complied from the literature, the aim being to create a resource that will aid in the analysis of luminescence spectral of ionic species in minerals and materials. The database is based on a range of excitation techniques and records both major and minor lines, and their activators. The luminescence techniques included in the database are cathodoluminescence, ion luminescence, and photoluminescence.

View Article and Find Full Text PDF

An optical spectrometer has been integrated into a JEOL 8900R electron microprobe, which allows simultaneous collection of light, X-ray, and electron signals. The cathodoluminescence signal is collected from a monocular eyepiece, which is integrated into the electron optics of the electron microprobe. The optical acquisition is synchronized with the stage motion.

View Article and Find Full Text PDF