Publications by authors named "Colin Kern"

Developing high-resolution reference maps of disease-susceptible spatial niches is a critical step to mitigating the profound effects of lung disease. Here, we present an integrated multimodal single-nucleus human lung atlas (snHLA) profiling 746,047 nuclei from 49 mapped lung blocks spanning clinically relevant distal airways, alveoli, and interstitium across 11 healthy adults. Integrating snRNA-seq and SNARE-seq2, which co-assays chromatin accessibility and gene expression from the same nucleus, we resolved 70 molecularly distinct populations and captured 332,846 accessible chromatin regions, nominating new transcriptional regulators of human lung cell diversity.

View Article and Find Full Text PDF
Article Synopsis
  • The study examines the roles of the hippocampus and prefrontal cortex in learning and cognition, focusing on their molecular development through innovative genomic techniques.
  • Researchers used over 53,000 single-nucleus profiles to analyze DNA methylation and chromatin conformation changes, finding that these processes occur at different times during development.
  • The findings reveal distinct chromatin interactions in neurons versus glial cells and identify specific genetic variants associated with schizophrenia, highlighting the potential of single-cell multi-omics in understanding brain development and neuropsychiatric disorders.
View Article and Find Full Text PDF

The spatial organization of molecules in a cell is essential for their functions. While current methods focus on discerning tissue architecture, cell-cell interactions, and spatial expression patterns, they are limited to the multicellular scale. We present Bento, a Python toolkit that takes advantage of single-molecule information to enable spatial analysis at the subcellular scale.

View Article and Find Full Text PDF

The heart, which is the first organ to develop, is highly dependent on its form to function. However, how diverse cardiac cell types spatially coordinate to create the complex morphological structures that are crucial for heart function remains unclear. Here we integrated single-cell RNA-sequencing with high-resolution multiplexed error-robust fluorescence in situ hybridization to resolve the identity of the cardiac cell types that develop the human heart.

View Article and Find Full Text PDF

Recent advances in single-cell transcriptomics have illuminated the diverse neuronal and glial cell types within the human brain. However, the regulatory programs governing cell identity and function remain unclear. Using a single-nucleus assay for transposase-accessible chromatin using sequencing (snATAC-seq), we explored open chromatin landscapes across 1.

View Article and Find Full Text PDF

Multiplexed fluorescence in situ hybridization (FISH) is a widely used approach for analyzing three-dimensional genome organization, but it is challenging to derive chromosomal conformations from noisy fluorescence signals, and tracing chromatin is not straightforward. Here we report a spatial genome aligner that parses true chromatin signal from noise by aligning signals to a DNA polymer model. Using genomic distances separating imaged loci, our aligner estimates spatial distances expected to separate loci on a polymer in three-dimensional space.

View Article and Find Full Text PDF

The functional annotation of livestock genomes is crucial for understanding the molecular mechanisms that underpin complex traits of economic importance, adaptive evolution and comparative genomics. Here, we provide the most comprehensive catalogue to date of regulatory elements in the pig (Sus scrofa) by integrating 223 epigenomic and transcriptomic data sets, representing 14 biologically important tissues. We systematically describe the dynamic epigenetic landscape across tissues by functionally annotating 15 different chromatin states and defining their tissue-specific regulatory activities.

View Article and Find Full Text PDF

Infectious bronchitis virus (IBV) induces respiratory and urogenital disease in chickens. Although IBV replicates in the gastrointestinal tract, enteric lesions are uncommon. We have reported a case of runting-stunting syndrome in commercial broilers from which an IBV variant was isolated from the intestines.

View Article and Find Full Text PDF

Highly pathogenic avian influenza viruses (HPAIVs) in gallinaceous poultry are associated with viral infection of the endothelium, the induction of a 'cytokine storm, and severe disease. In contrast, in Pekin ducks, HPAIVs are rarely endothelial tropic, and a cytokine storm is not observed. To date, understanding these species-dependent differences in pathogenesis has been hampered by the absence of a pure culture of duck and chicken endothelial cells.

View Article and Find Full Text PDF

Long-term survival and the persistence of bacteria in the host suggest either host unresponsiveness or induction of an immunological tolerant response to the pathogen. The role of the host immunological response to persistent colonization of Salmonella Enteritidis (SE) in chickens remains poorly understood. In the current study, we performed a cecal tonsil transcriptome analysis in a model of SE persistent infection in 2-week-old chickens to comprehensively examine the dynamics of host immunological responses in the chicken gastrointestinal tract.

View Article and Find Full Text PDF

Insulators play a critical role in spatiotemporal gene regulation in animals. The evolutionarily conserved CCCTC-binding factor (CTCF) is required for insulator function in mammals, but not all of its binding sites act as insulators. Here we explore the sequence requirements of CTCF-mediated transcriptional insulation using a sensitive insulator reporter in mouse embryonic stem cells.

View Article and Find Full Text PDF

Gene regulatory elements are central drivers of phenotypic variation and thus of critical importance towards understanding the genetics of complex traits. The Functional Annotation of Animal Genomes consortium was formed to collaboratively annotate the functional elements in animal genomes, starting with domesticated animals. Here we present an expansive collection of datasets from eight diverse tissues in three important agricultural species: chicken (Gallus gallus), pig (Sus scrofa), and cattle (Bos taurus).

View Article and Find Full Text PDF

Two environmental factors, Newcastle disease and heat stress, are concurrently negatively impacting poultry worldwide and warrant greater attention into developing genetic resistance within chickens. Using two genetically distinct and highly inbred layer lines, Fayoumi and Leghorn, we explored how different genetic backgrounds affect the bursal response to a treatment of simultaneous Newcastle disease virus (NDV) infection at 6 days postinfection (dpi) while under chronic heat stress. The bursa is a primary lymphoid organ within birds and is crucial for the development of B cells.

View Article and Find Full Text PDF

Background: Although considerable progress has been made towards annotating the noncoding portion of the human and mouse genomes, regulatory elements in other species, such as livestock, remain poorly characterized. This lack of functional annotation poses a substantial roadblock to agricultural research and diminishes the value of these species as model organisms. As active regulatory elements are typically characterized by chromatin accessibility, we implemented the Assay for Transposase Accessible Chromatin (ATAC-seq) to annotate and characterize regulatory elements in pigs and cattle, given a set of eight adult tissues.

View Article and Find Full Text PDF

Heat stress results in reduced productivity, anorexia, and mortality in chickens. The objective of the study was to identify genes and signal pathways associated with heat stress and Newcastle disease virus (NDV) infection in the liver of chickens through RNA-seq analysis, using two highly inbred chicken lines (Leghorn and Fayoumi). All birds were held in the same environment until 14 days of age.

View Article and Find Full Text PDF

Interferon regulatory factor 7 (IRF7) is known as the master transcription factor of the type I interferon response in mammalian species along with IRF3. Yet birds only have IRF7, while they are missing IRF3, with a smaller repertoire of immune-related genes, which leads to a distinctive immune response in chickens compared to in mammals. In order to understand the functional role of IRF7 in the regulation of the antiviral response against avian influenza virus in chickens, we generated chicken embryonic fibroblast (DF-1) cell lines and respective controls () by utilizing the CRISPR/Cas9 (clustered regularly interspaced short palindromic repeats/CRISPR-associated protein 9) system.

View Article and Find Full Text PDF

Intestinal carriage of Salmonella Enteritidis (SE) in the chicken host serves as a reservoir for transmission of Salmonella to humans through the consumption of poultry products. The aim of the current study was to examine the three-way interaction that occurred between host metabolites, resident gut microbiota and Salmonella following inoculation of SE in two-week-old layer chicks. Our results revealed an overall alteration in gut microbiome and metabolites in association with SE infection.

View Article and Find Full Text PDF

One of the primary aims of the Functional Annotation of ANimal Genomes (FAANG) initiative is to characterize tissue-specific regulation within animal genomes. To this end, we used chromatin immunoprecipitation followed by sequencing (ChIP-Seq) to map four histone modifications (H3K4me1, H3K4me3, H3K27ac, and H3K27me3) in eight prioritized tissues collected as part of the FAANG equine biobank from two thoroughbred mares. Data were generated according to optimized experimental parameters developed during quality control testing.

View Article and Find Full Text PDF

Full-grown oocytes are transcriptionally quiescent. Following maturation and fertilization, the early stages of embryonic development occur in the absence (or low levels) of transcription that results in a period of development relying on maternally derived products (e.g.

View Article and Find Full Text PDF

The major histocompatibility complex (MHC) B locus of chickens has been associated with resistance to different viral diseases. We previously provided evidence that chicken lines expressing MHC haplotypes B2 and B19 exhibit different resistance to a challenge with infectious bronchitis virus (IBV) Massachusetts 41 (M41). In the current study, we attempted to determine if those differences were true for genetically diverse IB viruses, i.

View Article and Find Full Text PDF

Background: Numerous long non-coding RNAs (lncRNAs) have been identified and their roles in gene regulation in humans, mice, and other model organisms studied; however, far less research has been focused on lncRNAs in farm animal species. While previous studies in chickens, cattle, and pigs identified lncRNAs in specific developmental stages or differentially expressed under specific conditions in a limited number of tissues, more comprehensive identification of lncRNAs in these species is needed. The goal of the FAANG Consortium (Functional Annotation of Animal Genomes) is to functionally annotate animal genomes, including the annotation of lncRNAs.

View Article and Find Full Text PDF

Wild-type avian encephalomyelitis virus (AEV) causes neurological signs in young chicks but no disease in pullets after oral or intracutaneous infection. However, if the virus gets embryo-adapted by serial passaging in chicken embryos, it will cause AE after intracutaneous infection in chickens of all ages. Recently, several cases of AE in layer pullets occurring shortly after intracutaneous vaccination were described.

View Article and Find Full Text PDF

The American alligator, , like all crocodilians, has temperature-dependent sex determination, in which the sex of an embryo is determined by the incubation temperature of the egg during a critical period of development. The lack of genetic differences between male and female alligators leaves open the question of how the genes responsible for sex determination and differentiation are regulated. Insight into this question comes from the fact that exposing an embryo incubated at male-producing temperature to estrogen causes it to develop ovaries.

View Article and Find Full Text PDF