Publications by authors named "Chunyin Gu"

Background: Therapeutic antibody drugs targeting the PD-1 pathway are generally characterized by relatively low response rates and susceptibility to drug resistance during clinical application. Therefore, there is an urgent need for alternative therapeutic strategies to increase the immune response rate. Bispecific antibodies co-targeting PD-1 and PD-L1 may have greater potential to improve the efficacy of the immune checkpoint pathway.

View Article and Find Full Text PDF

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Omicron variant has become the dominant infective strain. We report the structures of the Omicron spike trimer on its own and in complex with angiotensin-converting enzyme 2 (ACE2) or an anti-Omicron antibody. Most Omicron mutations are located on the surface of the spike protein and change binding epitopes to many current antibodies.

View Article and Find Full Text PDF

Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), which causes coronavirus disease-2019 (COVID-19), interacts with the host cell receptor angiotensin-converting enzyme 2 (hACE2) via its spike 1 protein during infection. After the virus sequence was published, we identified two potent antibodies against the SARS-CoV-2 receptor binding domain (RBD) from antibody libraries using a phage-to-yeast (PtY) display platform in only 10 days. Our lead antibody JMB2002, now in a Phase 1 clinical trial (ChiCTR2100042150), showed broad-spectrum blocking activity against hACE2 binding to the RBD of multiple SARS-CoV-2 variants, including B.

View Article and Find Full Text PDF

The critical role of IgE in allergic diseases is well-documented and clinically proven. Omalizumab, a humanized anti-IgE antibody, was the first approved antibody for the treatment of allergic diseases. Nevertheless, omalizumab still has some limitations, such as product instability and dosage restriction in clinical application.

View Article and Find Full Text PDF

Regulator of the H-ATPase of the vacuolar and endosomal membranes (RAVE) is essential for the reversible assembly of H-ATPase. RAVE primarily consists of three subunits: Rav1p, Rav2p and Skp1p. To characterize these subunits, in this study, four strains derived from Saccharomyces cerevisiae BY4742 were constructed with a FLAG tag on the Rav1p and Rav2p subunits.

View Article and Find Full Text PDF