Publications by authors named "Chunchao Cheng"

Development of temozolomide (TMZ) resistance is a critical factor contributing to a poor prognosis in glioma patients. TMZ resistance is also closely associated with the phosphorylation level of NF-κB, yet targeted inhibition of NF-κB activity in glioma can be leveraged to overcome TMZ resistance. ADAM12, a protein significantly overexpressed in glioma cells, is implicated in the pathogenesis and progression of glioma, yet its role in the development of TMZ resistance is completely understood.

View Article and Find Full Text PDF

Post ischemia-reperfusion (I/R) injury, an upregulation in Polymerase I and transcript release factor (PTRF) expression is observed. PTRF is implicated in the regulation of various cellular processes within neuronal cells, thereby exacerbating the deleterious effects of I/R injury. EPIC-1042 is a small molecule pharmacological agent that exhibits specificity in binding to PTRF.

View Article and Find Full Text PDF

Background: Delayed cerebral ischemia (DCI) is a common and serious complication of subarachnoid hemorrhage (SAH). Its pathogenesis is not fully understood. Here, we developed a predictive model based on peripheral blood biomarkers and validated the model using several bioinformatic multi-analysis methods.

View Article and Find Full Text PDF

The large-scale genomic analysis classifies glioblastoma (GBM) into three major subtypes, including classical (CL), proneural (PN), and mesenchymal (MES) subtypes. Each of these subtypes exhibits a varying degree of sensitivity to the temozolomide (TMZ) treatment, while the prognosis corresponds to the molecular and genetic characteristics of the tumor cell type. Tumors with MES features are predominantly characterized by the NF1 deletion/alteration, leading to sustained activation of the RAS and PI3K-AKT signaling pathways in GBM and tend to acquire drug resistance, resulting in the worst prognosis compared to other subtypes (PN and CL).

View Article and Find Full Text PDF

Background: Hypoxia is a pathological hallmark in most cancers, including glioblastoma (GBM). Hypoxic signaling activation and post-translational modification (PTM) of oncogenic proteins are well-studied in cancers. Accumulating studies indicate glycolytic enzyme PGK1 plays a crucial role in tumorigenesis, yet the underlying mechanisms remain unknown.

View Article and Find Full Text PDF

Malignant melanoma is one of the most aggressive of cancers; if not treated early, it can metastasize rapidly. Therefore, drug therapy plays an important role in the treatment of melanoma. Cinobufagin, an active ingredient derived from Venenum bufonis, can inhibit the growth and development of melanoma.

View Article and Find Full Text PDF

Background: Temozolomide (TMZ) treatment efficacy in glioblastoma is determined by various mechanisms such as TMZ efflux, autophagy, base excision repair (BER) pathway, and the level of O6-methylguanine-DNA methyltransferase (MGMT). Here, we reported a novel small-molecular inhibitor (SMI) EPIC-1042 (C20H28N6) with the potential to decrease TMZ efflux and promote PARP1 degradation via autolysosomes in the early stage.

Methods: EPIC-1042 was obtained from receptor-based virtual screening.

View Article and Find Full Text PDF