A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

HIF1α/ATF3 partake in PGK1 K191/K192 succinylation by modulating P4HA1/succinate signaling in glioblastoma. | LitMetric

HIF1α/ATF3 partake in PGK1 K191/K192 succinylation by modulating P4HA1/succinate signaling in glioblastoma.

Neuro Oncol

Laboratory of Neuro-oncology, Tianjin Neurological Institute, Department of Neurosurgery, Tianjin Medical University General Hospital, Key Laboratory of Post-Neuro Injury Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin, China.

Published: August 2024


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background: Hypoxia is a pathological hallmark in most cancers, including glioblastoma (GBM). Hypoxic signaling activation and post-translational modification (PTM) of oncogenic proteins are well-studied in cancers. Accumulating studies indicate glycolytic enzyme PGK1 plays a crucial role in tumorigenesis, yet the underlying mechanisms remain unknown.

Methods: We first used ChIP assays to uncover the crosstalk between HIF1α and ATF3 and their roles in P4HA1 regulation. Protein degradation analysis, LC-MS/MS, and in vitro succinate production assays were performed to examine the effect of protein succinylation on GBM pathology. Seahorse assay measured the effects of PGK1 succinylation at K191/K192 or its mutants on glucose metabolism. We utilized an in vivo intracranial mouse model for biochemical studies to elucidate the impact of ATF3 and P4HA1 on aerobic glycolysis and the tumor immune microenvironment.

Results: We demonstrated that HIF1α and ATF3 positively and negatively regulate the transcription of P4HA1, respectively, leading to an increased succinate production and increased activation of HIF1α signaling. P4HA1 expression elevated the succinate concentration, resulting in the enhanced succinylation of PGK1 at the K191 and K192 sites. Inhibition of proteasomal degradation of PGK1 by succinylation significantly increased aerobic glycolysis to generate lactate. Furthermore, ATF3 overexpression and P4HA1 knockdown reduced succinate and lactate levels in GBM cells, inhibiting immune responses and tumor growth.

Conclusions: Together, our study demonstrates that HIF1α/ATF3 participated in P4HA1/succinate signaling, which is the major regulator of succinate biosynthesis and PGK1 succinylation at K191 and K192 sites in GBM. The P4HA1/succinate pathway might be a novel and promising target for aerobic glycolysis in GBM.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11300026PMC
http://dx.doi.org/10.1093/neuonc/noae040DOI Listing

Publication Analysis

Top Keywords

pgk1 succinylation
12
aerobic glycolysis
12
p4ha1/succinate signaling
8
hif1α atf3
8
succinate production
8
k191 k192
8
k192 sites
8
pgk1
6
succinylation
6
gbm
5

Similar Publications