Publications by authors named "Chun-Chang Chen"

Central precocious puberty (CPP) is characterized by the early onset of secondary sexual characteristics caused by premature activation of the hypothalamic-pituitary-gonadal axis. CPP can result in short stature, reproductive health complications, and psychosocial challenges. The rising prevalence of CPP underscores the urgency of investigating the genetic and dietary factors that influence its development to reduce long-term health and developmental effects.

View Article and Find Full Text PDF

Background: Despite the comprehensive advancement in the field of cancer therapeutics, there remains an urgent need to identify new pathophysiological mechanisms that can be targeted in isolation or in combination with existing therapeutic regimens. The epithelial-to-mesenchymal transitions (EMT) induced by hypoxia, cytokines, and growth factors involves acquisition of invasive and migratory properties by cancer cells. Epigenetic alterations of DNA methylations and/or histone modifications cause substantial transcriptomic reprogramming in cancer cells during EMT and metastasis, which can be therapeutically targeted by a thorough understanding of the mutual interactions among the epigenetic processes.

View Article and Find Full Text PDF

Objectives: To investigate the factors in early life that may contribute to central precocious puberty (CPP).

Methods: The study utilized data from the Taiwan Puberty Longitudinal Study, including 2241 children under pubertal assessment and a questionnaire of risk factors. We analyzed associations using the Fitting Generalized Linear Models in R (R Core Team, 2023), with R studio (Posit, 2023) version 4.

View Article and Find Full Text PDF

Atrial fibrillation (AF) is often asymptomatic and paroxysmal. Screening and monitoring are needed especially for people at high risk. This study sought to use camera-based remote photoplethysmography (rPPG) with a deep convolutional neural network (DCNN) learning model for AF detection.

View Article and Find Full Text PDF

The DNA methylation program in vertebrates is an essential part of the epigenetic regulatory cascade of development, cell differentiation, and progression of diseases including cancer. While the DNA methyltransferases (DNMTs) are responsible for the in vivo conversion of cytosine (C) to methylated cytosine (5mC), demethylation of 5mC on cellular DNA could be accomplished by the combined action of the ten-eleven translocation (TET) enzymes and DNA repair. Surprisingly, the mammalian DNMTs also possess active DNA demethylation activity in vitro in a Ca- and redox conditions-dependent manner, although little is known about its molecular mechanisms and occurrence in a cellular context.

View Article and Find Full Text PDF

DNA methylation at C of CpG dyads (CpG) in vertebrate genomes is essential for gene regulation, genome stability and development. We show in this study that proper functioning of post-replicative DNA mismatch repair (MMR) in mammalian cells relies on the presence of genomic CpG, as well as on the maintenance DNA methyltransferase Dnmt1 independently of its catalytic activity. More importantly, high efficiency of mammalian MMR surveillance is achieved through a hemi-CpG-Np95(Uhrf1)-Dnmt1 axis, in which the MMR surveillance complex(es) is recruited to post-replicative DNA by Dnmt1, requiring its interactions with MutSα, as well as with Np95 bound at the hemi-methylated CpG sites.

View Article and Find Full Text PDF

This study develops a home-based frailty detection device that uses embedded systems and wireless sensing technology. This system helps monitor the impact of aging among the elderly through wireless automatic detection. The detection system consists of four devices.

View Article and Find Full Text PDF

Vertebrate DNA methyltransferases (DNMTs) have been thought to primarily function to covalently add a methyl group to the 5-position of cytosine. However, recent discovery of the DNA demethylation and dehydroxymethylation activities of DNMTs in vitro suggest new routes to complete the dynamic cycle of DNA methylation-demethylation of the vertebrate genomes. The in vitro reaction conditions suggest that vertebrate DNMTs can switch from DNA methylases to DNA dehydroxymethylases under oxidative stress and to DNA demethylases in the presence of calcium ion under nonreducing conditions.

View Article and Find Full Text PDF

Aim: Matrix metalloproteinase 9 (MMP-9) has been shown to be a potential biomarker for outcome prediction after neuron damage. This study investigated whether MMP-9 could be used for outcome prediction after traumatic brain injury (TBI).

Material And Methods: For the TBI group, cerebrospinal fluid (CSF) was collected at different days after surgery from 6 head injury patients who had received surgical intervention with external ventricular drainage insertion.

View Article and Find Full Text PDF

Methylation at the 5-position of DNA cytosine on the vertebrate genomes is accomplished by the combined catalytic actions of three DNA methyltransferases (DNMTs), the de novo enzymes DNMT3A and DNMT3B and the maintenance enzyme DNMT1. Although several metabolic routes have been suggested for demethylation of the vertebrate DNA, whether active DNA demethylase(s) exist has remained elusive. Surprisingly, we have found that the mammalian DNMTs, and likely the vertebrates DNMTs in general, can also act as Ca(2+) ion- and redox state-dependent active DNA demethylases.

View Article and Find Full Text PDF

For cytosine (C) demethylation of vertebrate DNA, it is known that the TET proteins could convert 5-methyl C (5-mC) to 5-hydroxymethyl C (5-hmC). However, DNA dehydroxymethylase(s), or enzymes able to directly convert 5-hmC to C, have been elusive. We present in vitro evidence that the mammalian de novo DNA methyltransferases DNMT3A and DNMT3B, but not the maintenance enzyme DNMT1, are also redox-dependent DNA dehydroxymethylases.

View Article and Find Full Text PDF

Acute myocardial infarction is a highly prevalent cardiovascular disease in Taiwan. Among several etiological risk factors, obesity and inflammation are strongly associated with the frequency of hypertension, cardiovascular disease, diabetes, and myocardial infarction. To discriminate obesity- and inflammation-related genes and the onset of acute myocardial infarction (AMI), a case-control study was conducted to investigate the association of the -308G/A polymorphisms of tumor necrosis factor (TNF)-α and the C825T polymorphism of guanidine nucleotide binding protein 3 (GNB3) with the onset of AMI among Taiwanese cohorts.

View Article and Find Full Text PDF

The purpose of this study is to build an indoor air quality monitoring system based on wireless sensor networks (WSNs) technology. The main functions of the system include (1) remote parameter adjustment and firmware update mechanism for the sensors to enhance the flexibility and convenience of the system, (2) sensor nodes are designed by referring to the IEEE 1451.4 standard.

View Article and Find Full Text PDF

The purpose of this study is to integrate wireless sensor technologies and artificial neural networks to develop a system to manage personal frailty information automatically. The system consists of five parts: (1) an eScale to measure the subject's reaction time; (2) an eChair to detect slowness in movement, weakness and weight loss; (3) an ePad to measure the subject's balancing ability; (4) an eReach to measure body extension; and (5) a Home-based Information Gateway, which collects all the data and predicts the subject's frailty. Using a furniture-based measuring device to provide home-based measurement means that health checks are not confined to health institutions.

View Article and Find Full Text PDF

A secretory aspartic protease (also termed as rhizopuspepsin) was purified from Rhizopus oryzae NBRC 4749 by ion exchange chromatography with a yield of 45%. The enzyme was a nonglycoprotein with a molecular mass of 37 kDa as determined by SDS-PAGE analysis. N-terminal sequence and LC-MS/MS analyses revealed that this rhizopuspepsin corresponded to the hypothetical protein RO3G_12822.

View Article and Find Full Text PDF

According to home healthcare requirement of chronic patients, this paper proposes a mobile-care system integrated with a variety of vital-sign monitoring, where all the front-end vital-sign measuring devices are portable and have the ability of short-range wireless communication. In order to make the system more suitable for home applications, the technology of wireless sensor network is introduced to transmit the captured vital signs to the residential gateway by means of multi-hop relay. Then the residential gateway uploads data to the care server via Internet to carry out patient's condition monitoring and the management of pathological data.

View Article and Find Full Text PDF

Internal duplication can enhance the function of a gene or provide raw material for the emergence of a new function in a gene. Therefore, it is interesting to see whether the frequency of internal duplication has increased during metazoan evolution. The growing number of sequenced eukaryotic genomes provides an excellent opportunity to study the change in the pattern of internal duplication in the course of metazoan evolution.

View Article and Find Full Text PDF

The gene encoding a Deinococcus radiodurans R1 bifunctional aminoacylase/carboxypeptidase (DR_ACY/CP) was amplified by polymerase chain reaction and cloned into pQE-30 to generate pQE-DRAC. The cloned gene consists of an open reading frame of 1197 bp encoding a protein with a molecular mass of 42,729 Da. The predicted amino acid sequence shows high homology with those of Geobacillus kaustophilus aminoacylase, Geobacillus stearothermophilus aminoacylase, Pyrococcus horikoshii carboxypeptidase/aminoacylase and Thermoanaerobacter tengcongensis aminoacylase/carboxypeptidase.

View Article and Find Full Text PDF

Extracellular leucine aminopeptidase (LAP) from Aspergillus sojae was purified to protein homogeneity by sequential fast protein liquid chromatography steps. LAP had an apparent molecular mass of 37 kDa, of which approximately 3% was contributed by N-glycosylated carbohydrate. The purified enzyme was most active at pH 9 and 70 degrees C for 30 min.

View Article and Find Full Text PDF