Publications by authors named "Christoph Humborg"

Coastal areas including fjords, emit substantial amounts of methane (CH) and nitrous oxide (NO), that may partially offset their carbon dioxide (CO) sink potential. Expanding coastal marine aquaculture may impact greenhouse gas dynamics. The role of mussel farming as a CO sink or source and its potential for nutrient removal is well investigated, but its effects on sea-air greenhouse gas emissions remain unclear.

View Article and Find Full Text PDF

We have constructed a nutrient fate model for the Baltic Sea that links anthropogenic nitrogen and phosphorus inputs to the catchment to the dynamics of waterborne loads to the Baltic Sea, covering the time-period from 1900 to present. During this period, nutrient inputs to the drainage basin approximately tripled to a peak in the 1980s, after which they declined. Our model accounts for temporary nutrient storage on land and in inland waters, forming active legacy pools that contribute to nutrient export to the Baltic Sea, and for nutrient removal by terrestrial and aquatic sinks.

View Article and Find Full Text PDF

Coastal areas are an important source of methane (CH). However, the exact origins of CH in the surface waters of coastal regions, which in turn drive sea-air emissions, remain uncertain. To gain a comprehensive understanding of the current and future climate change feedbacks, it is crucial to identify these CH sources and processes that regulate its formation and oxidation.

View Article and Find Full Text PDF

Coastal environments are a major source of marine methane in the atmosphere. Eutrophication and deoxygenation have the potential to amplify the coastal methane emissions. Here, we investigate methane dynamics in the eutrophic Stockholm Archipelago.

View Article and Find Full Text PDF

Coastal ecosystems dominate oceanic methane (CH4) emissions. However, there is limited knowledge about how biotic interactions between infauna and aerobic methanotrophs (i.e.

View Article and Find Full Text PDF

Coastal ecosystems can efficiently remove carbon dioxide (CO) from the atmosphere and are thus promoted for nature-based climate change mitigation. Natural methane (CH) emissions from these ecosystems may counterbalance atmospheric CO uptake. Still, knowledge of mechanisms sustaining such CH emissions and their contribution to net radiative forcing remains scarce for globally prevalent macroalgae, mixed vegetation, and surrounding depositional sediment habitats.

View Article and Find Full Text PDF
Article Synopsis
  • Coastal methane emissions significantly impact the global methane budget and can limit the carbon storage potential of coastal ecosystems, but current estimates are unreliable due to insufficient high-resolution and long-term data.
  • Research shows that methane concentrations in coastal habitats vary widely across meter-scales and fluctuate over time, exhibiting extreme variations and unique seasonal and daily patterns depending on habitat type.
  • To accurately assess methane emissions and variability, about 50 measurement samples per day are necessary; the study emphasizes that previously overlooked northern temperate coastal areas are essential sources of atmospheric methane, especially during summer months.
View Article and Find Full Text PDF

In this paper, we investigate the potential gains in cost-effectiveness from changing the spatial scale at which nutrient reduction targets are set for the Baltic Sea, with particular focus on nutrient loadings from agriculture. The costs of achieving loading reductions are compared across five levels of spatial scale, namely the entire Baltic Sea; the marine basin level; the country level; the watershed level; and the grid square level. A novel highly-disaggregated model, which represents decreases in agricultural profits, changes in root zone N concentrations and transport to the Baltic Sea is used.

View Article and Find Full Text PDF

Coastal zones are transitional areas between land and sea where large amounts of organic and inorganic carbon compounds are recycled by microbes. Especially shallow zones near land have been shown to be the main source for oceanic methane (CH) emissions. Water depth has been predicted as the best explanatory variable, which is related to CH ebullition, but exactly how sediment methanotrophs mediates these emissions along water depth is unknown.

View Article and Find Full Text PDF

The separation between crop- and livestock production is an important driver of agricultural nutrient surpluses in many parts of the world. Nutrient surpluses can be symptomatic of poor resource use efficiency and contribute to environmental problems. Thus, it is important not only to identify where surpluses can be reduced, but also the potential policy tools that could facilitate reductions.

View Article and Find Full Text PDF

Organic contaminants constitute one of many stressors that deteriorate the ecological status of the Baltic Sea. When managing environmental problems in this marine environment, it may be necessary to consider the interactions between various stressors to ensure that averting one problem does not exacerbate another. A novel modeling tool, BALTSEM-POP, is presented here that simulates interactions between climate forcing, hydrodynamic conditions, and water exchange, biogeochemical cycling, and organic contaminant transport and fate in the Baltic Sea.

View Article and Find Full Text PDF

Nutrient over-enrichment is one of the classic triggering mechanisms for the occurrence of cyanobacteria blooms in aquatic ecosystems. In the Baltic Sea, cyanobacteria regularly occur in the late summer months and form nuisance accumulations in surface waters and their abundance has intensified significantly in the past 50 years attributed to human-induced eutrophication. However, the natural occurrence of cyanobacteria during the Holocene is debated.

View Article and Find Full Text PDF

Past, present, and possible future changes in the Baltic Sea acid-base and oxygen balances were studied using different numerical experiments and a catchment-sea model system in several scenarios including business as usual, medium scenario, and the Baltic Sea Action Plan. New CO2 partial pressure data provided guidance for improving the marine biogeochemical model. Continuous CO2 and nutrient measurements with high temporal resolution helped disentangle the biogeochemical processes.

View Article and Find Full Text PDF

The Baltic Sea Action Plan (BSAP) requires tools to simulate effects and costs of various nutrient abatement strategies. Hierarchically connected databases and models of the entire catchment have been created to allow decision makers to view scenarios via the decision support system NEST. Increased intensity in agriculture in transient countries would result in increased nutrient loads to the Baltic Sea, particularly from Poland, the Baltic States, and Russia.

View Article and Find Full Text PDF

Carbon dioxide (CO2) transfer from inland waters to the atmosphere, known as CO2 evasion, is a component of the global carbon cycle. Global estimates of CO2 evasion have been hampered, however, by the lack of a framework for estimating the inland water surface area and gas transfer velocity and by the absence of a global CO2 database. Here we report regional variations in global inland water surface area, dissolved CO2 and gas transfer velocity.

View Article and Find Full Text PDF

Dynamic model simulations of the future climate and projections of future lifestyles within the Baltic Sea Drainage Basin (BSDB) were considered in this study to estimate potential trends in future nutrient loads to the Baltic Sea. Total nitrogen and total phosphorus loads were estimated using a simple proxy based only on human population (to account for nutrient sources) and stream discharges (to account for nutrient transport). This population-discharge proxy provided a good estimate for nutrient loads across the seven sub-basins of the BSDB considered.

View Article and Find Full Text PDF

Hypoxia is a well-described phenomenon in the offshore waters of the Baltic Sea with both the spatial extent and intensity of hypoxia known to have increased due to anthropogenic eutrophication, however, an unknown amount of hypoxia is present in the coastal zone. Here we report on the widespread unprecedented occurrence of hypoxia across the coastal zone of the Baltic Sea. We have identified 115 sites that have experienced hypoxia during the period 1955-2009 increasing the global total to ca.

View Article and Find Full Text PDF

This paper evaluates possible future nitrogen loadings from 105 catchments surrounding the Baltic Sea. Multiple regressions are used to model total nitrogen (TN) flux as a function of specific runoff (Q), atmospheric nitrogen deposition, and primary emissions (PE) from humans and livestock. On average cattle contributed with 63%, humans with 20%, and pigs with 17% of the total nitrogen PE to land.

View Article and Find Full Text PDF

Socio-economic development in Europe has exerted increasing pressure on the marine environment. Eutrophication, caused by nutrient enrichment, is evident in regions of all European seas. Its severity varies but has, in places, adversely impacted socio-economic activities.

View Article and Find Full Text PDF

We are using the coupled models in a decision support system, Nest, to evaluate the response of the marine ecosystem to changes in external loads through various management options. The models address all the seven major marine basins and the entire drainage basin of the Baltic Sea. A series of future scenarios have been developed, in close collaboration with the Helsinki Commission, to see the possible effects of improved wastewater treatment and manure handling, phosphorus-free detergents, and less intensive land use and live stocks.

View Article and Find Full Text PDF

We developed for the first time a catchment model simulating simultaneously the nutrient land-sea fluxes from all 105 major watersheds within the Baltic Sea drainage area. A consistent modeling approach to all these major watersheds, i.e.

View Article and Find Full Text PDF

Deep-water oxygen concentrations in the Baltic Sea are influenced by eutrophication, but also by saltwater inflows from the North Sea. In the last two decades, only two major inflows have been recorded and the lack of major inflows is believed to have resulted in a long-term stagnation of the deepest bottom water. Analyzing data from 1970 to 2000 at the basin scale, we show that the estimated volume of water with oxygen, <2 mL L(-1), was actually at a minimum at the end of the longest so-called stagnation period on record.

View Article and Find Full Text PDF