Publications by authors named "Chris Neff"

Purpose: A 3-biomarker homologous recombination deficiency (HRD) score is a key component of a currently FDA-approved companion diagnostic assay to identify HRD in patients with ovarian cancer using a threshold score of ≥ 42, though recent studies have explored the utility of a lower threshold (GIS ≥ 33). The present study evaluated whether the ovarian cancer thresholds may also be appropriate for major breast cancer subtypes by comparing the genomic instability score (GIS) distributions of BRCA1/2-deficient estrogen receptor-positive breast cancer (ER + BC) and triple-negative breast cancer (TNBC) to the GIS distribution of BRCA1/2-deficient ovarian cancer.

Methods: Ovarian cancer and breast cancer (ER + BC and TNBC) tumors from ten study cohorts were sequenced to identify pathogenic BRCA1/2 mutations, and GIS was calculated using a previously described algorithm.

View Article and Find Full Text PDF

The diagnostic evaluation of homologous recombination deficiency (HRD) is central to define targeted therapy strategies for patients with ovarian carcinoma. We evaluated HRD in 514 ovarian carcinoma samples by next-generation sequencing of DNA libraries, including BRCA1/BRCA2 and 26,523 single-nucleotide polymorphisms using the standardized Myriad HRD assay, with the predefined cut point of ≥42 for a positive genomic instability score (GIS). All samples were measured in the central Myriad laboratory and in an academic molecular pathology laboratory.

View Article and Find Full Text PDF

Background: Homologous recombination deficiency (HRD) score is related to chemotherapy response in some cancers, but its role in endometrial cancer in not known. We determined frequency and clinical significance of alterations in the HR pathway in endometrial cancer.

Methods: 253 endometrioid endometrial adenocarcinoma (EEA) samples from two independent cohorts (discovery and replication) were tested for HRD score using the Myriad HRD assay, microsatellite instability (MSI) and tumor mutation burden (TMB) using a next generation sequencing assay.

View Article and Find Full Text PDF

Purpose: Patients with triple-negative breast cancer (TNBC) with homologous recombination deficient tumors achieve significantly higher pathologic complete response (pCR) rates when treated with neoadjuvant platinum-based therapy. Tumor-infiltrating lymphocytes (TIL) are prognostic and predictive of chemotherapy benefit in early stage TNBC. The relationship between TILs, mutation status, and homologous recombination deficiency (HRD) status in TNBC remains unclear.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigates how defects in the homologous recombination (HR) DNA repair pathway impact the effectiveness of standard neoadjuvant chemotherapy in triple-negative breast cancer (TNBC) and BRCA1/2 mutation-associated cases.
  • Researchers analyzed tumor samples from 45 TNBC patients to determine HR deficiency status using HRD scores and BRCA1/2 mutation status, assessing their responses through residual cancer burden (RCB) index.
  • Results showed that HR deficient patients had a significantly higher likelihood of achieving a pathologic complete response (pCR) to chemotherapy compared to non-deficient patients, indicating the importance of HR status in guiding treatment decisions.
View Article and Find Full Text PDF

The 3-biomarker homologous recombination deficiency (HRD) assay measures the number of telomeric allelic imbalances, loss of heterozygosity, and large-scale state transitions in tumor DNA and combines these metrics into a single score that reflects DNA repair deficiency. The goal of this study is to assess the consistency of these HRD measures in different biopsies from distinct areas of the same cancer. HRD scores, BRCA mutation status, and promoter methylation were assessed in 99 samples from 33 surgically resected, stage I-III breast cancers; each cancer was biopsied in three distinct areas.

View Article and Find Full Text PDF
Article Synopsis
  • BRCA1/2 mutations and some sporadic triple-negative breast cancers (TNBC) are sensitive to DNA-damaging treatments due to DNA repair defects, and new genomic instability measures have been developed.
  • A combined homologous recombination deficiency (HRD) score, based on loss of heterozygosity (LOH), telomeric allelic imbalance (TAI), and large-scale state transitions (LST), was evaluated in neoadjuvant TNBC trials with platinum therapy to predict treatment response.
  • Results indicate that HR deficiency significantly predicts positive treatment outcomes, such as low residual cancer burden and complete response, even in BRCA1/2 non-mutated tumors, suggesting HR deficiency is a reliable biomarker
View Article and Find Full Text PDF

Introduction: Homologous recombination (HR) DNA repair is of clinical relevance in breast cancer. Three DNA-based homologous recombination deficiency (HRD) scores (HRD-loss of heterozygosity score (LOH), HRD-telomeric allelic imbalance score (TAI), and HRD-large-scale state transition score (LST)) have been developed that are highly correlated with defects in BRCA1/2, and are associated with response to platinum therapy in triple negative breast and ovarian cancer. This study examines the frequency of BRCA1/2 defects among different breast cancer subtypes, and the ability of the HRD scores to identify breast tumors with defects in the homologous recombination DNA repair pathway.

View Article and Find Full Text PDF

Background: Bacillus anthracis, Francisella tularensis, and Yersinia pestis are bacterial pathogens that can cause anthrax, lethal acute pneumonic disease, and bubonic plague, respectively, and are listed as NIAID Category A priority pathogens for possible use as biological weapons. However, the interactions between human proteins and proteins in these bacteria remain poorly characterized leading to an incomplete understanding of their pathogenesis and mechanisms of immune evasion.

Methodology: In this study, we used a high-throughput yeast two-hybrid assay to identify physical interactions between human proteins and proteins from each of these three pathogens.

View Article and Find Full Text PDF

Most poxviruses express multiple proteins containing ankyrin (ANK) repeats accounting for a large superfamily of related but unique determinants of poxviral tropism. Recently, select members of this novel family of poxvirus proteins have drawn considerable attention for their potential roles in modulating intracellular signaling networks during viral infection. The rabbit-specific poxvirus, myxoma virus (MYXV), encodes four unique ANK repeat proteins, termed M-T5, M148, M149, and M150, all of which include a carboxy-terminal PRANC domain which closely resembles a cellular protein motif called the F-box domain.

View Article and Find Full Text PDF

Vaccinia virus, a large double-stranded DNA virus, is the prototype of the Orthopoxvirus genus, which includes several pathogenic poxviruses of humans, such as monkeypox virus and variola virus. Here, we report a comprehensive yeast two-hybrid (Y2H) screening for the protein-protein interactions between vaccinia and human proteins. A total of 109 novel vaccinia-human protein interactions were detected among 33 viral proteins.

View Article and Find Full Text PDF

Linkage analysis on Utah pedigrees with strong family histories of major depression including only cases with the SLC6A4 HTTLPR short allele revealed a linkage peak on chromosome 4 (maximum HLOD = 3.5). This evidence suggests epistasis between SLC6A4 and an unknown gene as risk factors for major depression.

View Article and Find Full Text PDF

Identification of the binary interactions between viral and host proteins has become a valuable tool for investigating viral tropism and pathogenesis. Here, we present the first systematic protein interaction screening of the unique variola virus proteome by using yeast 2-hybrid screening against a variety of human cDNA libraries. Several protein-protein interactions were identified, including an interaction between variola G1R, an ankryin/F-box containing protein, and human nuclear factor kappa-B1 (NF-kappaB1)/p105.

View Article and Find Full Text PDF

The molecular etiology of obesity predisposition is largely unknown. Here, we present evidence that genetic variation in TBC1D1 confers risk for severe obesity in females. We identified a coding variant (R125W) in TBC1D1 that segregated with the disease in 4p15-14-linked obesity pedigrees.

View Article and Find Full Text PDF

Major depression disorder is a common psychiatric disease with a major economic impact on society. In many cases, no effective treatment is available. The etiology of major depression is complex, but it is clear that the disease is, to a large extent, determined genetically, especially among individuals with a familial history of major depression, presumably through the involvement of multiple predisposition genes in addition to an environmental component.

View Article and Find Full Text PDF

We are developing a VR system of integrated software and hardware for scientific research and clinical application. The system is sufficiently flexible and broad-based in appeal that neurobehavioral researchers from a variety of disciplines might be interested in using it for basic research and clinical studies. The system runs on a standard Windows-based personal computer with a high-performance graphics card.

View Article and Find Full Text PDF

Although the predisposition to morbid obesity is heritable, the identities of the disease-causing genes are largely unknown. Therefore, we have conducted a genomewide search with 628 markers, using multigenerational Utah pedigrees to identify genes involved in predisposition to obesity. In the genomewide search, we identified a highly significant linkage to high body-mass index in female patients, at D4S2632, with a multipoint heterogeneity LOD (HLOD) score of 6.

View Article and Find Full Text PDF