Publications by authors named "Chiara Martino"

Climate change- driven marine heatwaves are major risk for marine organisms already facing other anthropogenic hazards, such as chemical contamination in coastal areas. In this study we analyzed the impacts of marine heatwaves and phthalic acid esters (PAEs) pollution as single and combined stressors on development of the sea urchin Arbacia lixula. We tested whether the temperature suggested as optimal for development (24 °C) of this thermophilus species would enhance tolerance to PAEs pollution compared to that showed under ambient temperature (18 °C).

View Article and Find Full Text PDF

The study of ecotoxicity induced by vanadium (V) represents an area of increasing interest due to the growing use of V in both the industrial and pharmaceutical areas. This leads to its introduction into water environments, marking a developing problem, especially since rising global temperatures appear to intensify its toxic properties. Cytotoxicological approaches carried out on whole marine embryos represent a valid research tool since they grow directly in contact with the pollutants and are equipped with highly responsive cells to stressors.

View Article and Find Full Text PDF

In recent years, the invasive Atlantic blue crab () has increased its spread throughout the Mediterranean Sea, threatening native biodiversity and local economies. This study aimed to valorize sampled in Sicily by utilizing its exoskeleton as a source of chitosan, astaxanthin, and bio-phenolic compounds. These biomolecules were evaluated for their reducing, radical scavenging, and antitumor activity.

View Article and Find Full Text PDF

This study evaluates, for the first time, the reducing capacity, radical scavenger activity, and antitumor and anti-inflammatory effects of chitosan, astaxanthin, and bio-phenols extracted from the exoskeleton of Sicilian , the most widespread species of invasive crayfish in the Mediterranean region. Among the extracted compounds, astaxanthin exhibited the highest antioxidant activity in all assays. Chitosan and polyphenols demonstrated reducing and radical scavenging activity; chitosan showed significant ferric ion reducing capacity in the FRAP test, while bio-phenolic compounds displayed notable radical scavenging activity in the DPPH and ABTS assays.

View Article and Find Full Text PDF

Exogenous DNA damage represents one of the most harmful outcomes produced by environmental, physical, or chemical agents. Here, a comparative analysis of DNA fragmentation was carried out on sea urchin embryos exposed to four common pollutants of the marine environment: vanadium, cadmium, gadolinium and selenium. Using the terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay, fragmented DNA was quantified and localized in apoptotic cells mapping whole-mount embryos.

View Article and Find Full Text PDF
Article Synopsis
  • The global vanadium industry has been growing, leading to more vanadium compounds entering marine environments and becoming emerging pollutants.
  • Researchers investigated how vanadium (V) and rising ocean temperatures affect sea urchin embryos, uncovering that exposure to both increased malformations, hindered skeleton growth, and triggered stress responses and cell death.
  • The study found that rising temperatures enhance the toxicity of vanadium by increasing its accumulation in embryos and reducing essential calcium ions, emphasizing the need for more research on the effects of multiple environmental stressors.
View Article and Find Full Text PDF

DNA damage is one of the most important effects induced by chemical agents. We report a comparative analysis of DNA fragmentation on three different cell lines using terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay, generally applied to detect apoptosis. Our approach combines cytogenetic techniques and investigation in detached cellular structures, recovered from the culture medium with the aim to compare the DNA fragmentation of three different cell line even beyond the cells adherent to substrate.

View Article and Find Full Text PDF

Different bioactive molecules extracted from macroalgae, including oxylipins, showed interesting potentials in different applications, from healthcare to biomaterial manufacturing and environmental remediation. Thus far, no studies reported the effects of oxylipins-containing macroalgae extracts on embryo development of marine invertebrates and on neuroblastoma cancer cells. Here, the effects of an oxylipins-containing extract from Ericaria brachycarpa, a canopy-forming brown algae, were investigated on the development of Arbacia lixula sea urchin embryos and on SH-SY5Y neuroblastoma cells viability.

View Article and Find Full Text PDF
Article Synopsis
  • * Marine biodiversity offers a rich source of unique natural products that can be utilized in medicine, particularly for their potential anticancer, anti-inflammatory, and regenerative properties.
  • * The review aims to compile studies on the isolation of peptides from marine animals and their demonstrated anticancer effects in laboratory settings, organized by the taxonomy of the source organisms.
View Article and Find Full Text PDF

The increasing industrial use of vanadium (V), as well as its recent medical use in various pathologies has intensified its environmental release, making it an emerging pollutant. The sea urchin embryo has long been used to study the effects induced by metals, including V. In this study we used an integrated approach that correlates the biological effects on embryo development with proteolytic activities of gelatinases that could better reflect any metal-induced imbalances.

View Article and Find Full Text PDF

Vanadium toxicology is a topic of considerable importance as this metal is widely used in industrial and biomedical fields. However, it represents a potential emerging environmental pollutant because wastewater treatment plants do not adequately remove metal compounds that are subsequently released into the environment. Vanadium applications are limited due to its toxicity, so it is urgent to define this aspect.

View Article and Find Full Text PDF

The growing presence of lanthanides in the environment has drawn the attention of the scientific community on their safety and toxicity. The sources of lanthanides in the environment include diagnostic medicine, electronic devices, permanent magnets, etc. Their exponential use and the poor management of waste disposal raise serious concerns about the quality and safety of the ecosystems at a global level.

View Article and Find Full Text PDF

Metal pharmaceutical residues often represent emerging toxic pollutants of the aquatic environment, as wastewater treatment plants do not sufficiently remove these compounds. Recently, vanadium (V) derivatives have been considered as potential therapeutic factors in several diseases, however, only limited information is available about their impact on aquatic environments. This study used sea urchin embryos () to test V toxicity, as it is known they are sensitive to V doses from environmentally relevant to very cytotoxic levels (50 nM; 100 nM; 500 nM; 1 µM; 50 µM; 100 µM; 500 µM; and 1 mM).

View Article and Find Full Text PDF
Article Synopsis
  • Researchers have developed a new type of highly stretchable and compressive conductive hydrogel for use in sensing applications and electronic devices through a cross-linked complex coacervate method.
  • The hydrogels combine carboxylated nanogels with branched poly(ethylene imine) and incorporate graphene nanoplatelets for added electrical conductivity and unique mechanical properties.
  • By varying the molecular weight of the cross-linker, these gels can achieve impressive metrics such as a compressive strength of 25 MPa and stretchability of 1500%, while also being adhesive, self-healable, and low in cytotoxicity.
View Article and Find Full Text PDF

Within just a few months, the coronavirus disease 2019 (COVID-19) pandemic managed to bring to the foreground the conversation that infection prevention and control (IPC) experts have been pushing for decades regarding the control of the spread of infections. Implementing the basics of IPC has been a challenge for all affected countries battling with an exponential COVID-19 curve of infection. Preventing nosocomial transmission of the disease has been difficult in highly resourced and stable contexts, but even more so in the conflict context of the Middle East.

View Article and Find Full Text PDF

Vanadium, a naturally occurring element widely distributed in soil, water and air, has received considerable interest because its compounds are often used in different applications, from industry to medicine. While the possible medical use of vanadium compounds is promising, its potential harmful effects on living organisms are still unclear. Here, for the first time, we provide a toxicological profile induced by vanadium on Paracentrotus lividus sea urchin embryos, reporting an integrated and comparative analysis of the detected effects reflecting vanadium-toxicity.

View Article and Find Full Text PDF

Gradual ocean warming and marine heatwaves represent major threats for marine organisms already facing other anthropogenic-derived hazards, such as chemical contamination in coastal areas. In this study, the combined effects of thermal stress and exposure to gadolinium (Gd), a metal used as a contrasting agent in medical imaging which enters the aquatic environment, were investigated in the embryos and larvae of the sea urchin Paracentrotus lividus. Embryos were exposed to six treatments of three temperatures (18 °C, 21 °C, 24 °C) and two Gd concentrations (control: 0 μM; treated: 20 μM).

View Article and Find Full Text PDF

Eye drops and ointments are the most prescribed methods for ocular drug delivery. However, due to low drug bioavailability, rapid drug elimination, and low patient compliance there is a need for improved ophthalmic drug delivery systems. This study provides insights into the design of a new drug delivery device that consists of an ocular coil filled with ketorolac loaded PMMA microspheres.

View Article and Find Full Text PDF

In recent years, researches about the defense strategies induced by cadmium stress have greatly increased, invading several fields of scientific research. Mechanisms of cadmium-induced toxicity continue to be of interest for researchers given its ubiquitous nature and environmental distribution, where it often plays the role of pollutant for numerous organisms. The presence in the environment of this heavy metal has been constantly increasing because of its large employment in several industrial and agricultural activities.

View Article and Find Full Text PDF
Article Synopsis
  • A study conducted in Port-au-Prince, Haiti, found that 10% of gram-negative bacteria in women and 51% in neonates were ESBL-positive.
  • ESBL (Extended-Spectrum Beta-Lactamase) indicates bacteria that can resist certain antibiotics, making infections harder to treat.
  • The research identified longer hospital stays and higher antibiotic use as significant risk factors for developing ESBL colonization in patients.
View Article and Find Full Text PDF

Environmental factors could have a key role in the continuous and remarkable decline of sperm quality observed in the last decades. This study compared the seminal parameters and sperm DFI in men living in areas with different levels of air pollution. Results demonstrate that both steel plants workers and patients living in a high polluted area show a mean percentage of sperm DNA fragmentation above 30%, highlighting a clear sperm damage.

View Article and Find Full Text PDF

Chelates of Gadolinium (Gd), a lanthanide metal, are employed as contrast agents for magnetic resonance imaging and are released into the aquatic environment where they are an emerging contaminant. We studied the effects of environmentally relevant Gd concentrations on the development of two phylogenetically and geographically distant sea urchin species: the Mediterranean Paracentrotus lividus and the Australian Heliocidaris tuberculata. We found a general delay of embryo development at 24h post-fertilization, and a strong inhibition of skeleton growth at 48h.

View Article and Find Full Text PDF

Gadolinium (Gd) concentration is constantly increasing in the aquatic environment, becoming an emergent environmental pollutant. We investigated the effects of Gd on Paracentrotus lividus sea urchin embryos, focusing on skeletogenesis and autophagy. We observed a delay of biomineral deposition at 24 hours post fertilization (hpf), and a strong impairment of skeleton growth at 48 hpf, frequently displayed by an asymmetrical pattern.

View Article and Find Full Text PDF

Autophagy is a major intracellular pathway for the degradation and recycling of cytosolic components. Emerging evidence has demonstrated its crucial role during the embryo development of invertebrates and vertebrates. We recently demonstrated a massive activation of autophagy in Paracentrotus lividus embryos under cadmium stress conditions, and the existence of a temporal relationship between induced autophagy and apoptosis.

View Article and Find Full Text PDF

Artificial cells are best defined as micrometre-sized structures able to mimic many of the morphological and functional characteristics of a living cell. In this mini-review, we describe progress in the application of droplet-based microfluidics for the generation of artificial cells and protocells.

View Article and Find Full Text PDF