Remodeling of Embryo Architecture in Response to Vanadium and Increased Temperatures: From Morphometric to Molecular Changes.

J Xenobiot

Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Viale delle Scienze, 90128 Palermo, Italy.

Published: February 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The study of ecotoxicity induced by vanadium (V) represents an area of increasing interest due to the growing use of V in both the industrial and pharmaceutical areas. This leads to its introduction into water environments, marking a developing problem, especially since rising global temperatures appear to intensify its toxic properties. Cytotoxicological approaches carried out on whole marine embryos represent a valid research tool since they grow directly in contact with the pollutants and are equipped with highly responsive cells to stressors. Here, we discuss the detrimental impact on sea urchin embryos resulting from the combination of V and higher temperatures, reflecting the effects of climate variation. The results demonstrate the remodeling of embryonic architecture at the morphometric level, revealing developmental delays and anomalies. These malformations involve variations in the total skeletal mass due to the almost total absence of the skeleton, with the exception of small calcareous aggregates. Furthermore, both a modulation in total tissue remodeling enzymatic activities and a variation in the amount of three MMP-like gelatinases (MMP-2, -9, and -14) were observed. This research demonstrates that climate change significantly increases the harmful effects of V, emphasizing the necessity for comprehensive toxicity assessments in environmental evaluations.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11856858PMC
http://dx.doi.org/10.3390/jox15010022DOI Listing

Publication Analysis

Top Keywords

remodeling embryo
4
embryo architecture
4
architecture response
4
response vanadium
4
vanadium increased
4
increased temperatures
4
temperatures morphometric
4
morphometric molecular
4
molecular changes
4
changes study
4

Similar Publications

Cannabis consumption and legalization is increasing globally, raising concerns about its impact on fertility. In humans, we previously demonstrated that tetrahydrocannabinol (THC) and its metabolites reach the ovarian follicle. An extensive body of literature describes THC's impact on sperm, however no such studies have determined its effects on the oocyte.

View Article and Find Full Text PDF

Gene dysregulation impairs placental angiogenesis in allogeneic pig pregnancies.

Anim Reprod Sci

September 2025

Department of Biomedical & Clinical Sciences (BKV), BKH/Obstetrics & Gynecology, Faculty of Medicine and Health Sciences, Linköping University, Linköping SE-58185, Sweden.

Embryo transfer (ET) is a valuable reproductive technology in pigs, albeit its efficiency remains significantly lower than that of natural mating or artificial insemination (AI), owing to high embryonic death rates. Critical for embryo survival and pregnancy success is the placenta, which supports conceptus development through nutrient exchange, hormone production, and immune modulation. Alterations in placental development and function may therefore underlie the reduced efficiency of ET.

View Article and Find Full Text PDF

Purpose: Taenia pisiformis cysticerci have been reported in the female reproductive tract of rabbits, and this parasitosis is known to alter reproductive behavior and reduce embryo implantation; however, tissue-based studies relating the immune system to the implantation site during infection have not been previously addressed. Therefore, our research provides new information on the interaction between pregnancy and parasitic infection.

Methods: This study evaluated the recruitment of immune cells in uterine tissue during T.

View Article and Find Full Text PDF

Growth and remodeling of the cardiac outflow tract (OFT) is poorly understood but associated with serious congenital heart defects (CHD). While only a minority of CHDs have identifiable genetic causes, the functional roles of mechanical forces in OFT remodeling are far less characterized. A key barrier has been the lack of longitudinal investigations examining the interplay between dynamic blood flow and wall motion across clinically relevant stages.

View Article and Find Full Text PDF

Cardiolipin (CL) is the signature phospholipid of the inner mitochondrial membrane, where it stabilizes electron transport chain protein complexes. The final step in CL biosynthesis relates to its remodelling: the exchange of nascent acyl chains with longer, unsaturated chains. However, the enzyme responsible for cleaving nascent CL (nCL) has remained elusive.

View Article and Find Full Text PDF