Publications by authors named "Chia-Feng Tsai"

Multicellular circulating tumor cell (CTC) clusters can be up to 50 times more efficient than single CTCs in mediating viable metastasis. Here, combining computational ranking and functional determination, we identify the transmembrane protein Plexin-B2 (PLXNB2) as one of the top molecular targets associated with unfavorable distant metastasis-free survival, showing enriched expression in CTC clusters versus single CTCs from patients with advanced breast cancer (mostly female). Loss of PLXNB2 (Plxnb2) reduces the formation of homotypic tumor cell clusters and heterotypic tumor-myeloid cell clusters, reducing spontaneous metastases in female mice bearing human (mouse) breast cancer.

View Article and Find Full Text PDF

Purpose: Commonly occurring oncogenic mutations in EGFR render non-small cell lung cancers sensitive to approved EGFR-targeted drugs. EGFR in-frame exon 20 insertion (ex20ins) mutants are, however, less sensitive to such drugs. The efficacy of existing medicines may in part be limited by their selectivity for ex20ins mutations relative to wild-type EGFR, which is important for epithelial tissue homeostasis.

View Article and Find Full Text PDF

Microglia, the innate immune cells of the central nervous system, have been genetically implicated in multiple neurodegenerative diseases. Mapping the genetics of gene expression in human microglia has identified several loci associated with disease-associated genetic variants in microglia-specific regulatory elements. However, identifying genetic effects on splicing is challenging because of the use of short sequencing reads.

View Article and Find Full Text PDF

With advanced mass spectrometry (MS)-based proteomics, genome-scale proteome coverage can be achieved from bulk tissues. However, such bulk measurement lacks spatial resolution and obscures tissue heterogeneity, precluding proteome mapping of tissue microenvironment. Here we report an integrated wet collection of single microscale tissue voxels and Surfactant-assisted One-Pot voxel processing method termed wcSOP for robust label-free single voxel proteomics.

View Article and Find Full Text PDF

Immunoprecipitation is one of the most effective methods for enrichment of lysine-acetylated peptides for comprehensive acetylome analysis using mass spectrometry. Manual acetyl peptide enrichment method using non-conjugated antibodies and agarose beads has been developed and applied in various studies. However, it is time-consuming and can introduce contaminants and variability that leads to potential sample loss and decreased sensitivity and robustness of the analysis.

View Article and Find Full Text PDF

Analyzing the phosphoproteome at nanoscale poses a significant challenge, mainly due to the substantial sample loss from nonspecific surface adsorption during the enrichment of low stoichiometric phosphopeptides. Here, we describe a tandem tip-based phosphoproteomics sample preparation method capable of sequential sample cleanup and enrichment without the need for additional sample transfer, thereby minimizing sample loss. Integration of this method to our recently developed SOP (surfactant-assisted one-pot sample preparation) and iBASIL (improved boosting to amplify signal with isobaric labeling) approaches creates a streamlined workflow, enabling sensitive, high-throughput nanoscale phosphoproteomics measurements.

View Article and Find Full Text PDF
Article Synopsis
  • Despite extensive research on genomic changes in glioblastoma, the survival rate remains under 5% after five years.
  • This study aims to broaden the understanding of high-grade glioma by combining various biological analyses (proteomics, metabolomics, etc.) to identify complex regulatory mechanisms involved in tumor growth and progression.
  • Results from analysis of 228 tumors indicate significant variability in early-stage changes, but they converge on common outcomes affecting protein interactions and modifications, highlighting PTPN11's crucial role in high-grade gliomas.
View Article and Find Full Text PDF
Article Synopsis
  • Small extracellular vesicles (sEVs) are tiny vesicles (30-150nm) released by cells, important for diagnosing and treating diseases, with varied biological compositions influencing their functions.
  • The study combined surface-enhanced Raman spectroscopy (SERS) and machine learning to analyze individual sEVs, revealing that specific spectral features (biomolecular "fingerprints") correspond to the vesicles' biomolecular makeup.
  • The findings suggest that size-based isolation methods effectively yield sEVs with similar biochemical properties, enabling better differentiation among sub-populations, as over 84% of vesicles in the same size group exhibited distinct SERS features.
View Article and Find Full Text PDF

Identifying and targeting microenvironment-driven pathways that are active across acute myeloid leukemia (AML) genetic subtypes should allow the development of more broadly effective therapies. The proinflammatory cytokine interleukin-1β (IL-1β) is abundant in the AML microenvironment and promotes leukemic growth. Through RNA-sequencing analysis, we identify that IL-1β-upregulated ASF1B (antisilencing function-1B), a histone chaperone, in AML progenitors compared with healthy progenitors.

View Article and Find Full Text PDF

Microglia, the innate immune cells of the central nervous system, have been genetically implicated in multiple neurodegenerative diseases. We previously mapped the genetic regulation of gene expression and mRNA splicing in human microglia, identifying several loci where common genetic variants in microglia-specific regulatory elements explain disease risk loci identified by GWAS. However, identifying genetic effects on splicing has been challenging due to the use of short sequencing reads to identify causal isoforms.

View Article and Find Full Text PDF

Aim/hypothesis: Growth/differentiation factor 15 (GDF15) is a therapeutic target for a variety of metabolic diseases, including type 1 diabetes (T1D). However, the nausea caused by GDF15 is a challenging point for therapeutic development. In addition, it is unknown why the endogenous GDF15 fails to protect from T1D development.

View Article and Find Full Text PDF

Protein tyrosine phosphatase N2 (PTPN2) is a type 1 diabetes (T1D) candidate gene identified from human genome-wide association studies. PTPN2 is highly expressed in human and murine islets and becomes elevated upon inflammation and models of T1D, suggesting that PTPN2 may be important for β-cell survival in the context of T1D. To test whether PTPN2 contributed to β-cell dysfunction in an inflammatory environment, we generated a β-cell-specific deletion of Ptpn2 in mice (PTPN2-β knockout [βKO]).

View Article and Find Full Text PDF

Background: Lysine carbamylation is a biomarker of rheumatoid arthritis and kidney diseases. However, its cellular function is understudied due to the lack of tools for systematic analysis of this post-translational modification (PTM).

Methods: We adapted a method to analyze carbamylated peptides by co-affinity purification with acetylated peptides based on the cross-reactivity of anti-acetyllysine antibodies.

View Article and Find Full Text PDF

Background: Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) and fibromyalgia have overlapping neurologic symptoms particularly disabling fatigue. This has given rise to the question whether they are distinct central nervous system (CNS) entities or is one an extension of the other.

Material And Methods: To investigate this, we used unbiased quantitative mass spectrometry-based proteomics to examine the most proximal fluid to the brain, cerebrospinal fluid (CSF).

View Article and Find Full Text PDF

With advanced mass spectrometry (MS)-based proteomics, genome-scale proteome coverage can be achieved from bulk tissues. However, such bulk measurement lacks spatial resolution and obscures important tissue heterogeneity, which make it impossible for proteome mapping of tissue microenvironment. Here we report an integrated wet collection of single tissue voxel and Surfactant-assisted One-Pot voxel processing method termed wcSOP for robust label-free single voxel proteomics.

View Article and Find Full Text PDF

We characterized a prospective endometrial carcinoma (EC) cohort containing 138 tumors and 20 enriched normal tissues using 10 different omics platforms. Targeted quantitation of two peptides can predict antigen processing and presentation machinery activity, and may inform patient selection for immunotherapy. Association analysis between MYC activity and metformin treatment in both patients and cell lines suggests a potential role for metformin treatment in non-diabetic patients with elevated MYC activity.

View Article and Find Full Text PDF

Plant phosphoproteomics provides a global view of phosphorylation-mediated signaling in plants; however, it demands high-throughput methods with sensitive detection and accurate quantification. Despite the widespread use of protein precipitation for removing contaminants and improving sample purity, it limits the sensitivity and throughput of plant phosphoproteomic analysis. The multiple handling steps involved in protein precipitation lead to sample loss and process variability.

View Article and Find Full Text PDF

Lysine carbamylation is a biomarker of rheumatoid arthritis and kidney diseases. However, its cellular function is understudied due to the lack of tools for systematic analysis of this post-translational modification (PTM). We adapted a method to analyze carbamylated peptides by co-affinity purification with acetylated peptides based on the cross-reactivity of anti-acetyllysine antibodies.

View Article and Find Full Text PDF

Although the role of RNA binding proteins (RBPs) in extracellular RNA (exRNA) biology is well established, their exRNA cargo and distribution across biofluids are largely unknown. To address this gap, we extend the exRNA Atlas resource by mapping exRNAs carried by extracellular RBPs (exRBPs). This map was developed through an integrative analysis of ENCODE enhanced crosslinking and immunoprecipitation (eCLIP) data (150 RBPs) and human exRNA profiles (6,930 samples).

View Article and Find Full Text PDF

Metastasis is the cause of over 90% of all deaths associated with breast cancer, yet the strategies to predict cancer spreading based on primary tumor profiles and therefore prevent metastasis are egregiously limited. As rare precursor cells to metastasis, circulating tumor cells (CTCs) in multicellular clusters in the blood are 20-50 times more likely to produce viable metastasis than single CTCs. However, the molecular mechanisms underlying various CTC clusters, such as homotypic tumor cell clusters and heterotypic tumor-immune cell clusters, are yet to be fully elucidated.

View Article and Find Full Text PDF

G protein-coupled receptor (GPCR)-biased agonism, selective activation of certain signaling pathways relative to others, is thought to be directed by differential GPCR phosphorylation "barcodes." At chemokine receptors, endogenous chemokines can act as "biased agonists", which may contribute to the limited success when pharmacologically targeting these receptors. Here, mass spectrometry-based global phosphoproteomics revealed that CXCR3 chemokines generate different phosphorylation barcodes associated with differential transducer activation.

View Article and Find Full Text PDF

G protein-coupled receptor (GPCR) biased agonism, the activation of some signaling pathways over others, is thought to largely be due to differential receptor phosphorylation, or "phosphorylation barcodes." At chemokine receptors, ligands act as "biased agonists" with complex signaling profiles, which contributes to the limited success in pharmacologically targeting these receptors. Here, mass spectrometry-based global phosphoproteomics revealed that CXCR3 chemokines generate different phosphorylation barcodes associated with differential transducer activation.

View Article and Find Full Text PDF

Unlabelled: Multiple myeloma (MM) is a highly refractory hematologic cancer. Targeted immunotherapy has shown promise in MM but remains hindered by the challenge of identifying specific yet broadly representative tumor markers. We analyzed 53 bone marrow (BM) aspirates from 41 MM patients using an unbiased, high-throughput pipeline for therapeutic target discovery via single-cell transcriptomic profiling, yielding 38 MM marker genes encoding cell-surface proteins and 15 encoding intracellular proteins.

View Article and Find Full Text PDF

Effective phosphoproteome of nanoscale sample analysis remains a daunting task, primarily due to significant sample loss associated with non-specific surface adsorption during enrichment of low stoichiometric phosphopeptide. We develop a tandem tip phosphoproteomics sample preparation method that is capable of sample cleanup and enrichment without additional sample transfer, and its integration with our recently developed SOP (Surfactant-assisted One-Pot sample preparation) and iBASIL (improved Boosting to Amplify Signal with Isobaric Labeling) approaches provides a streamlined workflow enabling sensitive, high-throughput nanoscale phosphoproteome measurements. This approach significantly reduces both sample loss and processing time, allowing the identification of >3000 (>9500) phosphopeptides from 1 (10) µg of cell lysate using the label-free method without a spectral library.

View Article and Find Full Text PDF

Tumor-initiating cells with reprogramming plasticity or stem-progenitor cell properties (stemness) are thought to be essential for cancer development and metastatic regeneration in many cancers; however, elucidation of the underlying molecular network and pathways remains demanding. Combining machine learning and experimental investigation, here we report CD81, a tetraspanin transmembrane protein known to be enriched in extracellular vesicles (EVs), as a newly identified driver of breast cancer stemness and metastasis. Using protein structure modeling and interface prediction-guided mutagenesis, we demonstrate that membrane CD81 interacts with CD44 through their extracellular regions in promoting tumor cell cluster formation and lung metastasis of triple negative breast cancer (TNBC) in human and mouse models.

View Article and Find Full Text PDF