Publications by authors named "Chenxin Ying"

Background: Sepiapterin reductase deficiency (SRD) is a rare disorder characterized by motor and cognitive symptoms, where early diagnosis and treatment can significantly improve patient outcomes.

Methods: We performed genetic analysis, functional studies including Western blot and immunocytochemistry, and urinary sepiapterin measurements in a Chinese patient presenting with levodopa-responsive dystonia and parkinsonism.

Results: We identified a novel homozygous mutation (c.

View Article and Find Full Text PDF

Approximately 20% of dopa-responsive dystonia (DRD) cases remain genetically unresolved. Using whole-genome sequencing, we identified two TH variants in a young DRD patient, including a novel deep intronic variant. Minigene assays confirmed that this variant causes aberrant splicing.

View Article and Find Full Text PDF

Biallelic intronic pentanucleotide repeat expansions, mainly (AAGGG)exp and/or (ACAGG)exp in RFC1, are detected in cerebellar ataxia, neuropathy and vestibular areflexia syndrome, late-onset ataxia, and in a wide disease spectrum including Charcot-Marie-Tooth disease, multiple system atrophy, and Parkinson's disease (PD). However, the genotype-phenotype correlation and underlying mechanism are mostly unknown. We screened RFC1-repeat expansions in 1445 patients with parkinsonism.

View Article and Find Full Text PDF

Background: Primary Familial Brain Calcification (PFBC) can manifest clinically with a complex and heterogeneous array of symptoms, including parkinsonism, dysarthria, and cognitive impairment. However, the distinct presentations of PFBC in Asian and European populations remain unclear.

Methods: We conducted a systematic search of PubMed for studies involving genetically confirmed PFBC patients.

View Article and Find Full Text PDF
Article Synopsis
  • Intracerebral calcium deposition includes primary familial brain calcification (PFBC), which leads to motor decline, speech difficulties, and cognitive issues, with limited treatment options available.* -
  • Recent findings link PFBC to blood-brain barrier dysfunction, influenced by genetic variants that affect the neurovascular unit (NVU), leading to brain calcification.* -
  • The review examines literature on genetic mutations in cell junction proteins related to brain calcification, aiming to identify molecular pathways and support the need for molecular subtyping in understanding this condition.*
View Article and Find Full Text PDF

Background: Primary familial brain calcification (PFBC) is a monogenic disorder characterized by bilateral calcifications in the brain. The genetic basis remains unknown in over half of the PFBC patients, indicating the existence of additional novel causative genes. NAA60 was a recently reported novel causative gene for PFBC.

View Article and Find Full Text PDF

Elevated neurofilament light chain (NfL) levels have been associated with dementia in idiopathic Parkinson's disease (iPD). To examine the baseline and longitudinal changes in NfL levels in GBA-PD, SNCA-PD, and LRRK2-PD and further investigate the association between these genetic mutations, NfL, and dementia in PD. We analyzed data from the Parkinson's Progression Markers Initiative (PPMI), including 184 healthy controls (HC) and 617 PD categorized as iPD (n = 381), LRRK2-PD (n = 142), GBA-PD (n = 76) and SNCA-PD (n = 18).

View Article and Find Full Text PDF