Publications by authors named "Chenlan Lin"

Uremic tumoral calcinosis (UTC) is an uncommon and severe complication of hemodialysis therapy. The most important pathogenic factor involved in UTC is an increase in calcium-phosphorus products. We report here a patient undergoing hemodialysis for renal failure caused by hypertensive nephropathy who presented multiple UTCs in the right shoulder, left elbow and wrist.

View Article and Find Full Text PDF

An ionothermal reaction of lanthanoid salts with tetraethyl-p-xylenediphosphonate (tepxdp) in ionic liquids, such as choline chloride and malonic acid, resulted in the formation of three novel lanthanoid-organic coordination networks with the formula [Ln(H2pxdp)1.5]n {Ln = Tb (1), Dy (2) and Ho(3) and H4pxdp = p-xylenediphosphonic acid}. The structures, photoluminescence and magnetic properties of the three compounds were investigated in detail.

View Article and Find Full Text PDF

In this study, aluminum based metal-organic framework (Al-MOF)-organic polymer monoliths were prepared via microwave-assisted polymerization of ethylene dimethacrylate (EDMA), butyl methacrylate (BMA) with different weight percentages of Al-MOF (MIL-53; 37.5-62.5%) and subsequently utilized as sorbent in solid-phase microextraction (SPME) of penicillins (penicillin G, penicillin V, oxacillin, cloxacillin, dicloxacillin, nafcillin).

View Article and Find Full Text PDF

This study describes the fabrication of a novel hybrid metal-organic framework- organic polymer (MOF-polymer) for use as a stationary phase in fritless solid-phase microextraction (SPME) for validating analytical methods. The MOF-polymer was prepared by using ethylene dimethacrylate (EDMA), butyl methacrylate (BMA), and an imidazolium-based ionic liquid as porogenic solvent followed by microwave-assisted polymerization with the addition of 25 % MOF. This novel hybrid MOF-polymer was used to extract penicillin (penicillin G, penicillin V, oxacillin, cloxacillin, nafcillin, dicloxacillin) under different conditions.

View Article and Find Full Text PDF

Several imidazolium-based ionic liquids (ILs) with varying cation alkyl chain length (C(4)-C(10)) and anion type (tetrafluoroborate ([BF(4)](-)), hexafluorophosphate ([PF(6)](-)) and bis(trifluoromethylsulfonyl)imide ([Tf(2)N](-))) were used as reaction media in the microwave polymerization of methacrylate-based stationary phases. Scanning electron micrographs and backpressures of poly(butyl methacrylate-ethylene dimethacrylate) (poly(BMA-EDMA)) monoliths synthesized in the presence of these ionic liquids demonstrated that porosity and permeability decreased when cation alkyl chain length and anion hydrophobicity were increased. Performance of these monoliths was assessed for their ability to separate parabens by capillary electrochromatography (CEC).

View Article and Find Full Text PDF