Publications by authors named "Chengyan Ge"

Neurite outgrowth and synaptogenesis are critical steps for functional recovery following ischemic stroke. Damaged axons of the central nervous system in adult mammals exhibit limited regenerative capacity, resulting in enduring neurological deficits. Recent findings from our research indicate that inhibition of Rhoassociated kinase (ROCK)2 facilitates neuroprotection in different models of central nervous system diseases.

View Article and Find Full Text PDF

A dual-element modification strategy was proposed to promote the catalytic performance of the α-FeO catalyst for the selective catalytic reduction of NO by NH (NH-SCR of NO) at both low and high temperatures. By optimizing the loading amount of CuO (4 wt %) and WO (5 wt %), a wide operating temperature window (150-350 °C) was achieved on the modified α-FeO catalyst (W/Cu/Fe). Further characterizations revealed that the enhanced low-temperature activity could be attributed to the improved redox performance of α-FeO through CuO modification, while the superior high-temperature activity was primarily ascribed to the enhanced surface acidity induced by WO modification.

View Article and Find Full Text PDF

Well-designed artificial scaffolds are urgently needed due to the limited self-repair capacity of bone, which hampers effective regeneration in critical defects. Optimal scaffolds must provide physical guidance to recruit cells and immune regulation to improve the regenerative microenvironment. This study presents a novel scaffold composed of dual-sided centripetal microgrooved poly(D,L-lactide-co-caprolactone) (PLCL) film combined with a dynamic hydrogel containing prednisolone (PLS)-loaded Prussian blue nanoparticles (PB@PLS).

View Article and Find Full Text PDF

Fluorescent probes, typically based on the intramolecular charge transfer (ICT) mechanism, have received considerable research attention in cell detection due to their non-invasiveness, fast response, easy regulation, high sensitivity, and low damage tolerance for bio-samples. Generally, intracellular pH and biological species such as various gases, metal ions, and anions constitute the foundation of cells and participate in the basic physiological processes, whose abnormal level can lead to poisoning, cardiovascular disease, and cancer in living organisms. Therefore, monitoring of their quantity plays an essential role in understanding the status of organisms and preventing, diagnosing, and treating diseases.

View Article and Find Full Text PDF

Esophageal squamous cell carcinoma (ESCC) is a common type of cancer in a number of regions of the world, including East Asia, South Africa and Iran. It is often associated with poor prognosis rates. Tyrosine-protein kinase receptor UFO (AXL) is overexpressed in a subset of ESCC tumors, therefore the present study aimed to determine the effect of R428, a selective inhibitor of AXL, on ESCC tumor cells.

View Article and Find Full Text PDF

Metal-support interactions between Au and TiO2 are studied based on Au/TiO2 catalysts with different TiO2 crystal planes exposed. With ex situ XPS, TEM and in situ DRIFTS, we have investigated the crystal-plane-dependent metal-support interaction effects on the physiochemical properties of Au/TiO2 catalysts. Based on the structural characterization and spectroscopic results, we can observe chemical oscillations (including the electronic structures of Au nanoparticles and the interaction between Au/TiO2 catalysts and CO molecules) during alternate H2 and O2 pre-treatments.

View Article and Find Full Text PDF

In this work, TiO2 -graphene nanocomposites are synthesized with tunable TiO2 crystal facets ({100}, {101}, and {001} facets) through an anion-assisted method. These three TiO2 -graphene nanocomposites have similar particle sizes and surface areas; the only difference between them is the crystal facet exposed in TiO2 nanocrystals. UV/Vis spectra show that band structures of TiO2 nanocrystals and TiO2 -graphene nanocomposites are dependent on the crystal facets.

View Article and Find Full Text PDF