Discrete protein assemblies ranging from hundreds of kilodaltons to hundreds of megadaltons in size are a ubiquitous feature of biological systems and perform highly specialized functions. Despite remarkable recent progress in accurately designing new self-assembling proteins, the size and complexity of these assemblies has been limited by a reliance on strict symmetry. Here, inspired by the pseudosymmetry observed in bacterial microcompartments and viral capsids, we developed a hierarchical computational method for designing large pseudosymmetric self-assembling protein nanomaterials.
View Article and Find Full Text PDFDiscrete protein assemblies ranging from hundreds of kilodaltons to hundreds of megadaltons in size are a ubiquitous feature of biological systems and perform highly specialized functions. Despite remarkable recent progress in accurately designing new self-assembling proteins, the size and complexity of these assemblies has been limited by a reliance on strict symmetry. Inspired by the pseudosymmetry observed in bacterial microcompartments and viral capsids, we developed a hierarchical computational method for designing large pseudosymmetric self-assembling protein nanomaterials.
View Article and Find Full Text PDFDiscrete protein assemblies ranging from hundreds of kilodaltons to hundreds of megadaltons in size are a ubiquitous feature of biological systems and perform highly specialized functions . Despite remarkable recent progress in accurately designing new self-assembling proteins, the size and complexity of these assemblies has been limited by a reliance on strict symmetry . Inspired by the pseudosymmetry observed in bacterial microcompartments and viral capsids, we developed a hierarchical computational method for designing large pseudosymmetric self-assembling protein nanomaterials.
View Article and Find Full Text PDFComputationally designed multi-subunit assemblies have shown considerable promise for a variety of applications, including a new generation of potent vaccines. One of the major routes to such materials is rigid body sequence-independent docking of cyclic oligomers into architectures with point group or lattice symmetries. Current methods for docking and designing such assemblies are tailored to specific classes of symmetry and are difficult to modify for novel applications.
View Article and Find Full Text PDFTo develop vaccines for certain key global pathogens such as HIV, it is crucial to elicit both neutralizing and non-neutralizing Fc-mediated effector antibody functions. Clinical evidence indicates that non-neutralizing antibody functions including antibody-dependent cellular cytotoxicity (ADCC) and antibody-dependent cellular phagocytosis (ADCP) contribute to protection against several pathogens. In this study, we demonstrated that conjugation of HIV Envelope (Env) antigen gp120 to a self-assembling nanofiber material named Q11 induced antibodies with higher breadth and functionality when compared to soluble gp120.
View Article and Find Full Text PDFA major challenge in developing an effective vaccine against HIV-1 is the genetic diversity of its viral envelope. Because of the broad range of sequences exhibited by HIV-1 strains, protective antibodies must be able to bind and neutralize a widely mutated viral envelope protein. No vaccine has yet been designed which induces broadly neutralizing or protective immune responses against HIV in humans.
View Article and Find Full Text PDFBiomaterials capable of inducing immune responses with minimal associated inflammation are of interest in applications ranging from tissue repair to vaccines. Here we report the design of self-assembling randomized polypeptide nanomaterials inspired by glatiramoids, an immunomodulatory class of linear random copolymers. We hypothesized that peptide self-assemblies bearing similar randomized polypeptides would similarly raise responses skewed toward Type 2 immunity and T2 T-cell responses, additionally strengthening responses to co-assembled peptide epitopes in the absence of adjuvant.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
April 2021
Complement protein C3dg, a key linkage between innate and adaptive immunity, is capable of stimulating both humoral and cell-mediated immune responses, leading to considerable interest in its use as a molecular adjuvant. However, the potential of C3dg as an adjuvant is limited without ways of controllably assembling multiple copies of it into vaccine platforms. Here, we report a strategy to assemble C3dg into supramolecular nanofibers with excellent compositional control, using β-tail fusion tags.
View Article and Find Full Text PDFPeptide nanofibers are useful for many biological applications, including immunotherapy, tissue engineering, and drug delivery. The robust lengthwise assembly of these peptides into nanofibers is typically difficult to control, resulting in polydisperse fiber lengths and an incomplete understanding of how nanofiber length affects biological responses. Here, rationally designed capping peptides control the length of helical peptide nanofibers with unique precision.
View Article and Find Full Text PDFDespite the overwhelming success of vaccines in preventing infectious diseases, there remain numerous globally devastating diseases without fully protective vaccines, particularly human immunodeficiency virus (HIV), malaria and tuberculosis. Nanotechnology approaches are being developed both to design new vaccines against these diseases as well as to facilitate their global implementation. The reasons why a given pathogen may present difficulties for vaccine design are unique and tied to the co-evolutionary history of the pathogen and humans, but there are common challenges that nanotechnology is beginning to help address.
View Article and Find Full Text PDFACS Biomater Sci Eng
December 2017
A supramolecular peptide vaccine system was designed in which epitope-bearing peptides self-assemble into elongated nanofibers composed almost entirely of alpha-helical structure. The nanofibers were readily internalized by antigen presenting cells and produced robust antibody, CD4+ T-cell, and CD8+ T-cell responses without supplemental adjuvants in mice. Epitopes studied included a cancer B-cell epitope from the epidermal growth factor receptor class III variant (EGFRvIII), the universal CD4+ T-cell epitope PADRE, and the model CD8+ T-cell epitope SIINFEKL, each of which could be incorporated into supramolecular multi-epitope nanofibers in a modular fashion.
View Article and Find Full Text PDFAdv Healthc Mater
March 2018
Supramolecular materials composed of proteins and peptides have been receiving considerable attention toward a range of diseases and conditions from vaccines to drug delivery. Owing to the relative newness of this class of materials, the bulk of work to date has been preclinical. However, examples of approved treatments particularly in vaccines, dentistry, and hemostasis demonstrate the translational potential of supramolecular polypeptides.
View Article and Find Full Text PDF