Nat Mater
July 2025
Advances in computational methods have led to considerable progress in the design of protein nanomaterials. However, nearly all nanoparticles designed so far exhibit strict point group symmetry, which limits structural diversity and precludes anisotropic functionalization. Here we describe a computational strategy for designing multicomponent bifaceted protein nanomaterials with two distinctly addressable sides.
View Article and Find Full Text PDFNonhuman primates have a key role in the evaluation of novel therapeutics including vaccine and drug development. Monitoring biochemical and hematological parameters of macaques is critical to understand toxicity and safety, but general reference intervals following standardized guidelines remain to be determined. Here we compiled multiple internal datasets to define normal ranges of classical biochemical and hematological parameters in Indian and Chinese rhesus macaques as well as cynomolgus macaques.
View Article and Find Full Text PDFSanger sequencing remains widely used in various experimental contexts, often in combination with flow cytometry for indexing specific cell populations. However, existing software lacks the capability to automate quality control (QC) of raw Sanger sequencing data and integrate it with flow cytometry information on a large scale. Here, we introduce scifer, an R package now available in the latest release of Bioconductor (3.
View Article and Find Full Text PDFDiscrete protein assemblies ranging from hundreds of kilodaltons to hundreds of megadaltons in size are a ubiquitous feature of biological systems and perform highly specialized functions. Despite remarkable recent progress in accurately designing new self-assembling proteins, the size and complexity of these assemblies has been limited by a reliance on strict symmetry. Here, inspired by the pseudosymmetry observed in bacterial microcompartments and viral capsids, we developed a hierarchical computational method for designing large pseudosymmetric self-assembling protein nanomaterials.
View Article and Find Full Text PDFbioRxiv
December 2024
Recent advances in computational methods have led to considerable progress in the design of self-assembling protein nanoparticles. However, nearly all nanoparticles designed to date exhibit strict point group symmetry, with each subunit occupying an identical, symmetrically related environment. This limits the structural diversity that can be achieved and precludes anisotropic functionalization.
View Article and Find Full Text PDFmRNA vaccines are likely to become widely used for the prevention of infectious diseases in the future. Nevertheless, a notable gap exists in mechanistic data, particularly concerning the potential effects of sequential mRNA immunization or preexisting immunity on the early innate immune response triggered by vaccination. In this study, healthy adults, with or without documented prior SARS-CoV-2 infection, were vaccinated with the BNT162b2/Comirnaty mRNA vaccine.
View Article and Find Full Text PDFThe immune responses to Novavax's licensed NVX-CoV2373 nanoparticle Spike protein vaccine against SARS-CoV-2 remain incompletely understood. Here, we show in rhesus macaques that immunization with Matrix-M adjuvanted vaccines predominantly elicits immune events in local tissues with little spillover to the periphery. A third dose of an updated vaccine based on the Gamma (P.
View Article and Find Full Text PDFNanoparticles for multivalent display and delivery of vaccine antigens have emerged as a promising avenue for enhancing B cell responses to protein subunit vaccines. Here, we evaluated B cell responses in rhesus macaques immunized with prefusion-stabilized respiratory syncytial virus (RSV) F glycoprotein trimer compared with nanoparticles displaying 10 or 20 copies of the same antigen. We show that multivalent display skews antibody specificities and drives epitope-focusing of responding B cells.
View Article and Find Full Text PDFLicensed rabies virus vaccines based on whole inactivated virus are effective in humans. However, there is a lack of detailed investigations of the elicited immune response, and whether responses can be improved using novel vaccine platforms. Here we show that two doses of a lipid nanoparticle-formulated unmodified mRNA vaccine encoding the rabies virus glycoprotein (RABV-G) induces higher levels of RABV-G specific plasmablasts and T cells in blood, and plasma cells in the bone marrow compared to two doses of Rabipur in non-human primates.
View Article and Find Full Text PDFMol Ther Methods Clin Dev
December 2022
A third vaccine dose is often required to achieve potent, long-lasting immune responses. We investigated the effect of three 8-μg doses of CVnCoV, CureVac's severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccine candidate containing sequence-optimized unmodified mRNA encoding the spike (S) glycoprotein, administered at 0, 4, and 28 weeks, on immune responses in rhesus macaques. After the third dose, S-specific binding and neutralizing antibodies increased 50-fold compared with post-dose 2 levels, with increased responses also evident in the lower airways and against the SARS-CoV-2 B.
View Article and Find Full Text PDFUnderstanding the presence and durability of antibodies against SARS-CoV-2 in the airways is required to provide insights into the ability of individuals to neutralize the virus locally and prevent viral spread. Here, we longitudinally assessed both systemic and airway immune responses upon SARS-CoV-2 infection in a clinically well-characterized cohort of 147 infected individuals representing the full spectrum of COVID-19 severity, from asymptomatic infection to fatal disease. In addition, we evaluated how SARS-CoV-2 vaccination influenced the antibody responses in a subset of these individuals during convalescence as compared with naive individuals.
View Article and Find Full Text PDFCell fate decisions during early B cell activation determine the outcome of responses to pathogens and vaccines. We examined the early B cell response to T-dependent antigen in mice by single-cell RNA sequencing. Early after immunization, a homogeneous population of activated precursors (APs) gave rise to a transient wave of plasmablasts (PBs), followed a day later by the emergence of germinal center B cells (GCBCs).
View Article and Find Full Text PDFAdaptive immune responses play critical roles in viral clearance and protection against re-infection, and SARS-CoV-2 is no exception. What is exceptional is the rapid characterization of the immune response to the virus performed by researchers during the first 20 months of the pandemic. This has given us a more detailed understanding of SARS-CoV-2 compared to many viruses that have been with us for a long time.
View Article and Find Full Text PDFA single dose of the replication-competent, live-attenuated yellow fever virus (YFV) 17D vaccine provides lifelong immunity against human YFV infection. The magnitude, kinetics, and specificity of B cell responses to YFV 17D are relatively less understood than T cell responses. In this clinical study, we focused on early immune events critical for the development of humoral immunity to YFV 17D vaccination in 24 study subjects.
View Article and Find Full Text PDFWhole-blood fixation provides a rapid and simplified method for cell preservation compared to isolation of peripheral blood mononuclear cells (PBMCs). This can be especially important for sample acquisition and storage in resource-limited settings. However, some caveats have been reported, such as reduced cell marker recognition.
View Article and Find Full Text PDFAlthough intramuscular (i.m.) administration is the most commonly used route for licensed vaccines, subcutaneous (s.
View Article and Find Full Text PDFBACKGROUNDThe live attenuated BPZE1 vaccine candidate induces protection against B. pertussis and prevents nasal colonization in animal models. Here we report on the responses in humans receiving a single intranasal administration of BPZE1.
View Article and Find Full Text PDFJ Immunol Methods
September 2019
Germinal centers (GCs) are structures formed within B cell follicles critical for the generation of high affinity antibodies. The evaluation of GCs in secondary lymphoid tissues has emerged as a valuable means for understanding the immunological activity in vaccine responses, autoimmunity and cancer. The analysis has been facilitated by advances in sampling techniques, including non-invasive lymph node collection and fine needle aspiration.
View Article and Find Full Text PDFRespiratory syncytial virus (RSV) is a worldwide public health concern for which no vaccine is available. Elucidation of the prefusion structure of the RSV F glycoprotein and its identification as the main target of neutralizing antibodies have provided new opportunities for development of an effective vaccine. Here, we describe the structure-based design of a self-assembling protein nanoparticle presenting a prefusion-stabilized variant of the F glycoprotein trimer (DS-Cav1) in a repetitive array on the nanoparticle exterior.
View Article and Find Full Text PDFTransmission-blocking vaccines (TBVs) are considered an integral element of malaria eradication efforts. Despite promising evaluations of Plasmodium falciparum Pfs25-based TBVs in mice, clinical trials have failed to induce robust and long-lived Ab titers, in part due to the poorly immunogenic nature of Pfs25. Using nonhuman primates, we demonstrate that multiple aspects of Pfs25 immunity were enhanced by antigen encapsulation in poly(lactic-co-glycolic acid)-based [(PLGA)-based] synthetic vaccine particles (SVP[Pfs25]) and potent TLR-based adjuvants.
View Article and Find Full Text PDF