RNA sequencing (RNAseq) enables transcriptional profiling of many organisms. This chapter describes the use of RNAseq in prokaryotes to identify quorum sensing (QS)-controlled transcripts by comparing samples from QS-induced and -uninduced conditions. Briefly, each RNA sample is converted to ds-cDNA in a method that limits amplification of ribosomal RNA species.
View Article and Find Full Text PDFUnlabelled: Members of the genus Burkholderia are known to be adept at biofilm formation, which presumably assists in the survival of these organisms in the environment and the host. Biofilm formation has been linked to quorum sensing (QS) in several bacterial species. In this study, we characterized Burkholderia thailandensis biofilm development under flow conditions and sought to determine whether QS contributes to this process.
View Article and Find Full Text PDFBurkholderia pseudomallei, Burkholderia thailandensis, and Burkholderia mallei (the Bptm group) are close relatives with very different lifestyles: B. pseudomallei is an opportunistic pathogen, B. thailandensis is a nonpathogenic saprophyte, and B.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
November 2012
Acyl-homoserine lactone-mediated quorum sensing (QS) regulates diverse activities in many species of Proteobacteria. QS-controlled genes commonly code for production of secreted or excreted public goods. The acyl-homoserine lactones are synthesized by members of the LuxI signal synthase family and are detected by cognate members of the LuxR family of transcriptional regulators.
View Article and Find Full Text PDFMore than 200 direct CodY target genes in Staphylococcus aureus were identified by genome-wide analysis of in vitro DNA binding. This analysis, which was confirmed for some genes by DNase I footprinting assays, revealed that CodY is a direct regulator of numerous transcription units associated with amino acid biosynthesis, transport of macromolecules, and virulence. The virulence genes regulated by CodY fell into three groups.
View Article and Find Full Text PDFCodY is a global regulatory protein that was first discovered in Bacillus subtilis, where it couples gene expression to changes in the pools of critical metabolites through its activation by GTP and branched-chain amino acids. Homologs of CodY can be found encoded in the genomes of nearly all low-G+C gram-positive bacteria, including Staphylococcus aureus. The introduction of a codY-null mutation into two S.
View Article and Find Full Text PDF