Publications by authors named "Chad Grueter"

This review discusses the pathophysiological changes associated with cardiac aging and the potential therapeutic role of the anti-aging protein Klotho. It highlights key contributors to heart failure, such as arterial stiffening, myocardial fibrosis, and impaired cardiac relaxation, all of which lead to the declining function of the aging heart. This review also explores the regulation of Klotho expression, its various forms, and its impact on cardiac health, emphasizing its protective roles against oxidative stress, inflammation, and cardiac remodeling.

View Article and Find Full Text PDF

Background: Calcium (Ca) homeostasis in cardiac fibroblasts (CFs) plays a critical role in myocardial repair and remodeling after injury. JPH (junctophilin-2; human JPH2 or mouse Jph2) is a structural protein known to regulate intracellular Ca signaling and excitation-contraction coupling in cardiomyocytes. However, the role of JPH2 in CF biology remains unexplored.

View Article and Find Full Text PDF

Transcription directs the heart's development and adaptation to stress signals, and transcriptional dysregulation contributes to developmental disorders, pathological remodeling and heart failure (HF). Stereotypic changes at the mRNA level in the failing heart can be powerful diagnostics, as dysregulation can precede pathological outcomes such as decreased ejection fraction and increased heart size. The Mediator Complex is a general regulator of transcription in all eukaryotic cells; however, unknown subunit- and tissue-specific functions complicate our understanding of Mediator's influence on the cell.

View Article and Find Full Text PDF

A strategic research plan (SRP) serves as a compass for the patient advocacy organizations driving the therapeutic options for their rare disorder. The MED13L Foundation commissioned the SRP in 2022 through COMBINEDBrain, a consortium of patient advocacy organizations of rare neurodevelopmental disorders, working toward clinical trial readiness. The MED13L Foundation SRP is an objective evaluation of MED13L literature including clinical and basic science knowledge interwoven with an assessment of preclinical trial readiness tools necessary for achieving therapeutic interventions.

View Article and Find Full Text PDF

Mitochondrial hyperfission in response to cellular insult is associated with reduced energy production and programmed cell death. Thus, there is a critical need to understand the molecular mechanisms coordinating and regulating the complex process of mitochondrial fission. We develop a nonlinear dynamical systems model of dynamin related protein one (Drp1)-dependent mitochondrial fission and use it to identify parameters which can regulate the total fission rate (TFR) as a function of time.

View Article and Find Full Text PDF

Doberman Pinschers are known for their increased susceptibility to dilated cardiomyopathy (DCM) relative to other domestic dogs. This makes the Doberman Pinscher a key model for gene-disease investigations. We conducted a genome-wide association study (GWAS) leveraging a database of genetic profiles obtained through collaboration with the Doberman Diversity Project (DDP).

View Article and Find Full Text PDF

The lysosome integrates anabolic signalling and nutrient-sensing to regulate intracellular growth pathways. The leucine-rich repeat containing 8 (LRRC8) channel complex forms a lysosomal anion channel and regulates PI3K-AKT-mTOR signalling, skeletal muscle differentiation, growth, and systemic glucose metabolism. Here, we define the endogenous LRRC8 subunits localized to a subset of lysosomes in differentiated myotubes.

View Article and Find Full Text PDF

Mitochondria and endoplasmic reticulum (ER) contact sites (MERCs) are protein- and lipid-enriched hubs that mediate interorganellar communication by contributing to the dynamic transfer of Ca, lipid, and other metabolites between these organelles. Defective MERCs are associated with cellular oxidative stress, neurodegenerative disease, and cardiac and skeletal muscle pathology via mechanisms that are poorly understood. We previously demonstrated that skeletal muscle-specific knockdown (KD) of the mitochondrial fusion mediator optic atrophy 1 (OPA1) induced ER stress and correlated with an induction of Mitofusin-2, a known MERC protein.

View Article and Find Full Text PDF

The COVID-19 disease, caused by the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), emerged in late 2019 and rapidly spread worldwide, becoming a pandemic that infected millions of people and caused significant deaths. COVID-19 continues to be a major threat, and there is a need to deepen our understanding of the virus and its mechanisms of infection. To study the cellular responses to SARS-CoV-2 infection, we performed an RNA sequencing of infected vs.

View Article and Find Full Text PDF

Aging and many illnesses and injuries impair skeletal muscle mass and function, but the molecular mechanisms are not well understood. To better understand the mechanisms, we generated and studied transgenic mice with skeletal muscle-specific expression of growth arrest and DNA damage inducible α (GADD45A), a signaling protein whose expression in skeletal muscle rises during aging and a wide range of illnesses and injuries. We found that GADD45A induced several cellular changes that are characteristic of skeletal muscle atrophy, including a reduction in skeletal muscle mitochondria and oxidative capacity, selective atrophy of glycolytic muscle fibers, and paradoxical expression of oxidative myosin heavy chains despite mitochondrial loss.

View Article and Find Full Text PDF

Progesterone prevents development of endometrial cancers through its receptor (PR) although the molecular mechanisms have yet to be fully characterized. In this study, we performed a global analysis of gene regulation by progesterone using human endometrial cancer cells that expressed PR endogenously or exogenously. We found progesterone strongly inhibits multiple components of the platelet derived growth factor receptor (PDGFR), Janus kinase (JAK), signal transducer and activator of transcription (STAT) pathway through PR.

View Article and Find Full Text PDF

Background: Transcriptional remodeling is known to contribute to heart failure (HF). Targeting stress-dependent gene expression mechanisms may represent a clinically relevant gene therapy option. We recently uncovered a salutary mechanism in the heart whereby JP2 (junctophilin-2), an essential component of the excitation-contraction coupling apparatus, is site-specifically cleaved and releases an N-terminal fragment (JP2NT [N-terminal fragment of JP2]) that translocates into the nucleus and functions as a transcriptional repressor of HF-related genes.

View Article and Find Full Text PDF

Impairments in macroautophagy/autophagy, which degrades dysfunctional organelles as well as long-lived and aggregate proteins, are associated with several cardiomyopathies; however, the regulation of cardiac autophagy remains insufficiently understood. In this regard, ULK1 and ULK2 are thought to play primarily redundant roles in autophagy initiation, but whether their function is developmentally determined, potentially having an impact on cardiac integrity and function remains unknown. Here, we demonstrate that perinatal loss of ULK1 or ULK2 in cardiomyocytes (cU1-KO and cU2-KO mice, respectively) enhances basal autophagy without altering autophagy machinery content while preserving cardiac function.

View Article and Find Full Text PDF

Aims: The study investigates the role and mechanisms of clinically translatable exercise heart rate (HR) envelope effects, without dyssynchrony, on myocardial ischaemia tolerance compared to standard preconditioning methods. Since the magnitude and duration of exercise HR acceleration are tightly correlated with beneficial cardiac outcomes, it is hypothesized that a paced exercise-similar HR envelope, delivered in a maximally physiologic way that avoids the toxic effects of chamber dyssynchrony, may be more than simply a readout, but rather also a significant trigger of myocardial conditioning and stress resistance.

Methods And Results: For 8 days over 2 weeks, sedated mice were atrial-paced once daily via an oesophageal electrode to deliver an exercise-similar HR pattern with preserved atrioventricular and interventricular synchrony.

View Article and Find Full Text PDF

Background: PI3Kα (Phosphoinositide 3-kinase α) regulates multiple downstream signaling pathways controlling cell survival, growth, and proliferation and is an attractive therapeutic target in cancer and obesity. The clinically-approved PI3Kα inhibitor, BYL719, is in further clinical trials for cancer and overgrowth syndrome. However, the potential impact of PI3Kα inhibition on the heart and following myocardial infarction (MI) is unclear.

View Article and Find Full Text PDF

The endothelium responds to numerous chemical and mechanical factors in regulating vascular tone, blood pressure, and blood flow. The endothelial volume-regulated anion channel (VRAC) has been proposed to be mechanosensitive and thereby sense fluid flow and hydrostatic pressure to regulate vascular function. Here, we show that the leucine-rich repeat-containing protein 8a, LRRC8A (SWELL1), is required for VRAC in human umbilical vein endothelial cells (HUVECs).

View Article and Find Full Text PDF

Maintenance of skeletal muscle is beneficial in obesity and Type 2 diabetes. Mechanical stimulation can regulate skeletal muscle differentiation, growth and metabolism; however, the molecular mechanosensor remains unknown. Here, we show that SWELL1 () functionally encodes a swell-activated anion channel that regulates PI3K-AKT, ERK1/2, mTOR signaling, muscle differentiation, myoblast fusion, cellular oxygen consumption, and glycolysis in skeletal muscle cells.

View Article and Find Full Text PDF

Background Nuclear-to-mitochondrial communication regulating gene expression and mitochondrial function is a critical process following cardiac ischemic injury. In this study, we determined that cyclin C, a component of the Mediator complex, regulates cardiac and mitochondrial function in part by modifying mitochondrial fission. We tested the hypothesis that cyclin C functions as a transcriptional cofactor in the nucleus and a signaling molecule stimulating mitochondrial fission in response to stimuli such as cardiac ischemia.

View Article and Find Full Text PDF

Pathological cardiac remodeling is induced through multiple mechanisms that include neurohumoral and biomechanical stress resulting in transcriptional alterations that ultimately become maladaptive and lead to the development of heart failure (HF). Although cardiac transcriptional remodeling is mediated by the activation of numerous signaling pathways that converge on a limited number of transcription factors (TFs) that promote hypertrophy (pro-hypertrophic TFs), the current therapeutic approach to prevent HF utilizes pharmacological inhibitors that largely target specific receptors that are activated in response to pathological stimuli. Thus, there is limited efficacy with the current pharmacological approaches to inhibit transcriptional remodeling associated with the development of HF.

View Article and Find Full Text PDF

Thyroid hormone (TH) is a key regulator of transcriptional homeostasis in the heart. While hypothyroidism is known to result in adverse cardiac effects, the molecular mechanisms that modulate TH signaling are not completely understood. Mediator is a multiprotein complex that coordinates signal-dependent transcription factors with the basal transcriptional machinery to regulate gene expression.

View Article and Find Full Text PDF

Aims: Cardiac remodelling in the ischaemic heart determines prognosis in patients with ischaemic heart disease (IHD), while enhancement of angiogenesis and cell survival has shown great potential for IHD despite translational challenges. Phosphoinositide 3-kinase (PI3K)/Akt signalling pathways play a critical role in promoting angiogenesis and cell survival. However, the effect of PI3Kβ in the ischaemic heart is poorly understood.

View Article and Find Full Text PDF

The Mediator coactivator complex directs gene-specific expression by binding distal enhancer-bound transcription factors through its Med1 subunit while bridging to RNA polymerase II (Pol II) at gene promoters. In addition, Mediator scaffolds epigenetic modifying enzymes that determine local DNA accessibility. Previously, we found that deletion of Med1 in cardiomyocytes deregulates more than 5,000 genes and promotes acute heart failure.

View Article and Find Full Text PDF

Junctophilin-2 (JP2) is a structural protein required for normal excitation-contraction (E-C) coupling. After cardiac stress, JP2 is cleaved by the calcium ion-dependent protease calpain, which disrupts the E-C coupling ultrastructural machinery and drives heart failure progression. We found that stress-induced proteolysis of JP2 liberates an N-terminal fragment (JP2NT) that translocates to the nucleus, binds to genomic DNA, and controls expression of a spectrum of genes in cardiomyocytes.

View Article and Find Full Text PDF