Global expression analysis of endometrial cancer cells in response to progesterone identifies new therapeutic targets.

J Steroid Biochem Mol Biol

Department of Obstetrics and Gynecology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA; Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA, USA; Department of Internal Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM, USA; University

Published: November 2023


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Progesterone prevents development of endometrial cancers through its receptor (PR) although the molecular mechanisms have yet to be fully characterized. In this study, we performed a global analysis of gene regulation by progesterone using human endometrial cancer cells that expressed PR endogenously or exogenously. We found progesterone strongly inhibits multiple components of the platelet derived growth factor receptor (PDGFR), Janus kinase (JAK), signal transducer and activator of transcription (STAT) pathway through PR. The PDGFR/JAK/STAT pathway signals to control numerous downstream targets including AP-1 transcription factors Fos and Jun. Treatment with inhibitors of the PDGFR/JAK/STAT pathway significantly blocked proliferation in multiple novel patient-derived organoid models of endometrial cancer, and activation of this pathway was found to be a poor prognostic signal for the survival of patients with endometrial cancer from The Cancer Genome Atlas. Our study identifies this pathway as central to the growth-limiting effects of progesterone in endometrial cancer and suggests that inhibitors of PDGFR/JAK/STAT should be considered for future therapeutic interventions.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11171468PMC
http://dx.doi.org/10.1016/j.jsbmb.2023.106399DOI Listing

Publication Analysis

Top Keywords

endometrial cancer
20
cancer cells
8
pdgfr/jak/stat pathway
8
inhibitors pdgfr/jak/stat
8
endometrial
6
cancer
6
progesterone
5
pathway
5
global expression
4
expression analysis
4

Similar Publications

Background: Endometrial carcinoma (EC) represents a significant clinical challenge due to its pronounced molecular heterogeneity, directly influencing prognosis and therapeutic responses. Accurate classification of molecular subtypes (CNV-high, CNV-low, MSI-H, POLE) and precise tumor mutational burden (TMB) assessment is crucial for guiding personalized therapeutic interventions. Integrating proteomics data with advanced machine learning (ML) techniques offers a promising strategy for achieving precise, clinically actionable classification and biomarker discovery in EC.

View Article and Find Full Text PDF

B cells play a critical role in tumor immunity, with their presence associated with improved prognosis in various cancers, including endometrial cancer (EC). However, the nature of the B cell response within the tumor microenvironment (TME) remains incompletely understood. In this study, we conducted single-cell analyses of B cells and CD4+ T cells in the TME of EC.

View Article and Find Full Text PDF

Objective: To compare the survival of women with high grade endometrial cancer between asymptomatic and women presenting bleeding symptoms.

Design: An Israel Gynecologic Oncology Group multi-center retrospective cohort study.

Methods: The study included women who underwent surgery for high-grade endometrial cancer.

View Article and Find Full Text PDF

Ovarian and endometrial cancers frequently harbor a mutation in the tumor suppressor gene TP53, which occurs in over 90 % of ovarian cancers and in the most aggressive endometrial cancers. The normal tumor suppressive functions of p53 are disrupted, resulting in unregulated cell growth and therapeutic resistance to standard treatments including chemotherapy and PARP inhibitors. Hence, a novel therapeutic strategy is urgently needed for p53 mutant gynecologic cancers, and we propose that converting mutant p53 to a wild type conformation and restoring its tumor suppressive functions has the potential to greatly improve treatment.

View Article and Find Full Text PDF