Cell Commun Signal
January 2024
Cerebral cavernous malformation (CCM) is a hemorrhagic neurovascular disease with no currently available therapeutics. Prior evidence suggests that different cell types may play a role in CCM pathogenesis. The contribution of each cell type to the dysfunctional cellular crosstalk remains unclear.
View Article and Find Full Text PDFPrimary sclerosing cholangitis (PSC) is an immune-mediated disease of the bile ducts that co-occurs with inflammatory bowel disease (IBD) in almost 90% of cases. Colorectal cancer is a major complication of patients with PSC and IBD, and these patients are at a much greater risk compared to patients with IBD without concomitant PSC. Combining flow cytometry, bulk and single-cell transcriptomics, and T and B cell receptor repertoire analysis of right colon tissue from 65 patients with PSC, 108 patients with IBD and 48 healthy individuals we identified a unique adaptive inflammatory transcriptional signature associated with greater risk and shorter time to dysplasia in patients with PSC.
View Article and Find Full Text PDFCoeliac disease is a complex, polygenic inflammatory enteropathy caused by exposure to dietary gluten that occurs in a subset of genetically susceptible individuals who express either the HLA-DQ8 or HLA-DQ2 haplotypes. The need to develop non-dietary treatments is now widely recognized, but no pathophysiologically relevant gluten- and HLA-dependent preclinical model exists. Furthermore, although studies in humans have led to major advances in our understanding of the pathogenesis of coeliac disease, the respective roles of disease-predisposing HLA molecules, and of adaptive and innate immunity in the development of tissue damage, have not been directly demonstrated.
View Article and Find Full Text PDFThe respective effects of tissue alarmins interleukin (IL)-15 and interferon beta (IFNβ), and IL-21 produced by T cells on the reprogramming of cytotoxic T lymphocytes (CTLs) that cause tissue destruction in celiac disease is poorly understood. Transcriptomic and epigenetic profiling of primary intestinal CTLs showed massive and distinct temporal transcriptional changes in response to tissue alarmins, while the impact of IL-21 was limited. Only anti-viral pathways were induced in response to all the three stimuli, albeit with differences in dynamics and strength.
View Article and Find Full Text PDFBackground & Aims: Gamma chain (γc) cytokines (interleukin [IL]2, IL4, IL7, IL9, IL15, and IL21) signal via a common γc receptor. IL2 regulates the immune response, whereas IL21 and IL15 contribute to development of autoimmune disorders, including celiac disease. We investigated whether BNZ-2, a peptide designed to inhibit IL15 and IL21, blocks these cytokines selectively and its effects on intraepithelial cytotoxic T cells.
View Article and Find Full Text PDFCeliac disease (CeD), caused by immune reactions to cereal gluten, is treated with gluten -elimination diets. Within hours of gluten exposure, either perorally or extraorally by intradermal injection, treated patients experience gastrointestinal symptoms. To test whether gluten exposure leads to systemic cytokine production time -related to symptoms, series of multiplex cytokine measurements were obtained in CeD patients after gluten challenge.
View Article and Find Full Text PDFEicosanoids are inflammatory mediators that play a key but incompletely understood role in linking the innate and adaptive immune systems. Here, we show that cytotoxic effector T cells (CTLs) are capable of both producing and responding to cysteinyl leukotrienes (CystLTs), allowing for the killing of target cells in a T cell receptor-independent manner. This process is dependent on the natural killer receptor NKG2D and exposure to IL-15, a cytokine induced in distressed tissues.
View Article and Find Full Text PDFBackground & Aims: The mechanisms of tissue destruction during progression of celiac disease are poorly defined. It is not clear how tissue stress and adaptive immunity contribute to the activation of intraepithelial cytotoxic T cells and the development of villous atrophy. We analyzed epithelial cells and intraepithelial cytotoxic T cells in family members of patients with celiac disease, who were without any signs of adaptive antigluten immunity, and in potential celiac disease patients, who have antibodies against tissue transglutaminase 2 in the absence of villous atrophy.
View Article and Find Full Text PDFNK cells are large granular lymphocytes that form a critical component of the innate immune system, whose functions include the killing of cells expressing stress-induced molecules. It is increasingly accepted that despite being considered prototypical effector cells, NK cells require signals to reach their full cytotoxic potential. We previously showed that IL-15 is capable of arming CD8 effector T cells to kill independently of their TCR via NKG2D in a cPLA2-dependent process.
View Article and Find Full Text PDFA major challenge of cancer immunotherapy is the persistence and outgrowth of subpopulations that lose expression of the target antigen. IL-15 is a potent cytokine that can promote organ-specific autoimmunity when up-regulated on tissue cells. Here we report that T cells eradicated 2-wk-old solid tumors that expressed IL-15, eliminating antigen-negative cells.
View Article and Find Full Text PDFDeficiencies of the T cell and NK cell CD3ζ signaling adapter protein in patients with cancer and autoimmune diseases are well documented, but mechanistic explanations are fragmentary. The stimulatory NKG2D receptor on T and NK cells mediates tumor immunity but can also promote local and systemic immune suppression in conditions of persistent NKG2D ligand induction that include cancer and certain autoimmune diseases. In this paper, we provide evidence that establishes a causative link between CD3ζ impairment and chronic NKG2D stimulation due to pathological ligand expression.
View Article and Find Full Text PDFIL-15 and NKG2D promote autoimmunity and celiac disease by arming cytotoxic T lymphocytes (CTLs) to cause tissue destruction. However, the downstream signaling events underlying these functional properties remain unclear. Here, we identify cytosolic phospholipase A(2) (cPLA(2)) as a central molecule in NKG2D-mediated cytolysis in CTLs.
View Article and Find Full Text PDFMajor histocompatibility complex (MHC) class II alleles HLA-DQ8 and the mouse homologue I-A(g7) lacking a canonical aspartic acid residue at position beta57 are associated with coeliac disease and type I diabetes. However, the role of this single polymorphism in disease initiation and progression remains poorly understood. The lack of Asp 57 creates a positively charged P9 pocket, which confers a preference for negatively charged peptides.
View Article and Find Full Text PDFCeliac disease is an intestinal inflammatory disorder induced by dietary gluten in genetically susceptible individuals. The mechanisms underlying the massive expansion of interferon gamma-producing intraepithelial cytotoxic T lymphocytes (CTLs) and the destruction of the epithelial cells lining the small intestine of celiac patients have remained elusive. We report massive oligoclonal expansions of intraepithelial CTLs that exhibit a profound genetic reprogramming of natural killer (NK) functions.
View Article and Find Full Text PDFA major function of NKG2D linking innate and adaptive immunity is to upregulate antigen-specific CTL-mediated cytotoxicity in tissues expressing stress-induced NKG2D ligands, such as MIC, by coactivating TCR signaling. Here, we show that, under conditions of dysregulated IL15 expression in vivo in patients with celiac disease and in vitro in healthy individuals, multiple steps of the NKG2D/DAP10 signaling pathway leading to ERK and JNK activation are coordinately primed to activate direct cytolytic function independent of TCR specificity in effector CD8 T cells. These findings may not only explain previous reports of transformation of CTL into NK-like "lymphokine-activated killers" (LAK cells) under high doses of IL2 (a substitute for IL15) but may also have significant implications for understanding and treating immunopathological diseases.
View Article and Find Full Text PDF