Publications by authors named "Jordan D Ernest"

There is growing recognition that regionalization of bacterial colonization and immunity along the intestinal tract has an important role in health and disease. Yet, the mechanisms underlying intestinal regionalization and its dysregulation in disease are not well understood. This study found that regional epithelial expression of the transcription factor GATA4 controls bacterial colonization and inflammatory tissue immunity in the proximal small intestine by regulating retinol metabolism and luminal IgA.

View Article and Find Full Text PDF

Death due to sepsis remains a persistent threat to critically ill patients confined to the intensive care unit and is characterized by colonization with multi-drug-resistant healthcare-associated pathogens. Here we report that sepsis in mice caused by a defined four-member pathogen community isolated from a patient with lethal sepsis is associated with the systemic suppression of key elements of the host transcriptome required for pathogen clearance and decreased butyrate expression. More specifically, these pathogens directly suppress interferon regulatory factor 3.

View Article and Find Full Text PDF

Coeliac disease is a complex, polygenic inflammatory enteropathy caused by exposure to dietary gluten that occurs in a subset of genetically susceptible individuals who express either the HLA-DQ8 or HLA-DQ2 haplotypes. The need to develop non-dietary treatments is now widely recognized, but no pathophysiologically relevant gluten- and HLA-dependent preclinical model exists. Furthermore, although studies in humans have led to major advances in our understanding of the pathogenesis of coeliac disease, the respective roles of disease-predisposing HLA molecules, and of adaptive and innate immunity in the development of tissue damage, have not been directly demonstrated.

View Article and Find Full Text PDF

Intestinal reovirus infection can trigger T helper 1 (T1) immunity to dietary antigen, raising the question of whether other viruses can have a similar impact. Here we show that the acute CW3 strain of murine norovirus, but not the persistent CR6 strain, induces T1 immunity to dietary antigen. This property of CW3 is dependent on its major capsid protein, a virulence determinant.

View Article and Find Full Text PDF

Somatic mutations in tet methylcytosine dioxygenase 2 (TET2), which encodes an epigenetic modifier enzyme, drive the development of haematopoietic malignancies. In both humans and mice, TET2 deficiency leads to increased self-renewal of haematopoietic stem cells with a net developmental bias towards the myeloid lineage. However, pre-leukaemic myeloproliferation (PMP) occurs in only a fraction of Tet2 mice and humans with TET2 mutations, suggesting that extrinsic non-cell-autonomous factors are required for disease onset.

View Article and Find Full Text PDF

Viral infections have been proposed to elicit pathological processes leading to the initiation of T helper 1 (T1) immunity against dietary gluten and celiac disease (CeD). To test this hypothesis and gain insights into mechanisms underlying virus-induced loss of tolerance to dietary antigens, we developed a viral infection model that makes use of two reovirus strains that infect the intestine but differ in their immunopathological outcomes. Reovirus is an avirulent pathogen that elicits protective immunity, but we discovered that it can nonetheless disrupt intestinal immune homeostasis at inductive and effector sites of oral tolerance by suppressing peripheral regulatory T cell (pT) conversion and promoting T1 immunity to dietary antigen.

View Article and Find Full Text PDF