Publications by authors named "Scott B Biering"

Cyclodextrins (CDs) are cyclic oligosaccharides with promising therapeutic applications, including antiviral activity. During viral infections, pathogenesis arises not only from viral replication but also from viral proteins that act as "toxins", disrupting cellular barriers and inducing endothelial dysfunction, a hallmark of severe diseases such as dengue and COVID-19. Dengue virus (DENV) NS1 and SARS-CoV-2 Spike proteins induce endothelial hyperpermeability, contributing to severe complications.

View Article and Find Full Text PDF

Crimean-Congo hemorrhagic fever virus (CCHFV) is a priority pathogen transmitted by tick bites, with no vaccines or specific therapeutics approved to date. Severe disease manifestations include hemorrhage, endothelial dysfunction, and multiorgan failure. Infected cells release the viral glycoprotein GP38, whose extracellular function is presently unknown.

View Article and Find Full Text PDF
Article Synopsis
  • - Flaviviruses are a group of viruses that cause serious diseases in humans, including dengue and Zika, and rely on a protein called NS1 for replication and disease severity.
  • - NS1 is secreted from infected cells and contributes to endothelial dysfunction, which affects blood vessel permeability and may facilitate the spread of the virus in the body.
  • - Research demonstrates that NS1 aids in the virus's ability to cross endothelial barriers and boosts the infectivity of specific target cells, indicating its crucial role in virus dissemination and its impact on disease progression.
View Article and Find Full Text PDF
Article Synopsis
  • The study investigates the relationship between yellow fever virus (YFV) nonstructural protein 1 (NS1) and disease severity in yellow fever (YF) patients, highlighting how increased NS1 levels correlate with vascular dysfunction and severe clinical outcomes.
  • Researchers analyzed serum samples from patients with severe and non-severe YF cases, finding higher levels of NS1 and syndecan-1 (a vascular leak marker) in severe cases.
  • Results indicate that YFV NS1 contributes to endothelial dysfunction by inducing shedding of syndecan-1, suggesting these serum markers could be used for diagnosing and predicting disease severity in YF.
View Article and Find Full Text PDF

Flavivirus infections result in a variety of outcomes, from clinically inapparent infections to severe, sometimes fatal cases characterized by hemorrhagic manifestations and vascular leakage leading to shock (dengue), meningomyeloencephalitis (West Nile), and congenital abnormalities (Zika). Although there are approved vaccines against several flaviviruses, potentially enhancing cross-reactive immune responses have complicated the development and implementation of vaccines against dengue and Zika viruses, and no specific therapeutics currently exist. The flavivirus nonstructural protein 1 (NS1) is a promising antiviral target because it is a conserved multifunctional virulence factor that directly triggers vascular leak.

View Article and Find Full Text PDF

Crimean-Congo hemorrhagic fever virus (CCHFV) is a priority pathogen transmitted by tick bites, with no vaccines or specific therapeutics approved to date. Severe disease manifestations include hemorrhage, endothelial dysfunction, and multiorgan failure. Infected cells secrete the viral glycoprotein GP38, whose extracellular function is presently unknown.

View Article and Find Full Text PDF

Dengue virus (DENV) is a medically important flavivirus causing an estimated 50-100 million dengue cases annually, some of whom progress to severe disease. DENV non-structural protein 1 (NS1) is secreted from infected cells and has been implicated as a major driver of dengue pathogenesis by inducing endothelial barrier dysfunction. However, less is known about how DENV NS1 interacts with immune cells and what role these interactions play.

View Article and Find Full Text PDF
Article Synopsis
  • * DENV NS1 activates inflammasomes in macrophages, leading to the release of IL-1β, but this process does not result in cell death, allowing macrophages to survive while responding to the virus.
  • * Research shows that the inflammasome pathway, particularly involving caspase-1, is crucial for immune response, as mice lacking this pathway are more vulnerable to severe DENV infections.
View Article and Find Full Text PDF

Yellow fever virus (YFV) infections can cause severe disease manifestations, including hepatic injury, endothelial damage, coagulopathy, hemorrhage, systemic organ failure, and shock, and are associated with high mortality in humans. While nonstructural protein 1 (NS1) of the related dengue virus is implicated in contributing to vascular leak, little is known about the role of YFV NS1 in severe YF and mechanisms of vascular dysfunction in YFV infections. Here, using serum samples from qRT-PCR-confirmed YF patients with severe (n=39) or non-severe (n=18) disease in a well-defined hospital cohort in Brazil, plus samples from healthy uninfected controls (n=11), we investigated factors associated with disease severity.

View Article and Find Full Text PDF

Identification of host determinants of coronavirus infection informs mechanisms of pathogenesis and may provide novel therapeutic targets. Here, we demonstrate that the histone demethylase KDM6A promotes infection of diverse coronaviruses, including SARS-CoV, SARS-CoV-2, MERS-CoV and mouse hepatitis virus (MHV) in a demethylase activity-independent manner. Mechanistic studies reveal that KDM6A promotes viral entry by regulating expression of multiple coronavirus receptors, including ACE2, DPP4 and Ceacam1.

View Article and Find Full Text PDF

Identifying host genes essential for Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) has the potential to reveal novel drug targets and further our understanding of Coronavirus Disease 2019 (COVID-19). We previously performed a genome-wide CRISPR/Cas9 screen to identify proviral host factors for highly pathogenic human coronaviruses. Few host factors were required by diverse coronaviruses across multiple cell types, but DYRK1A was one such exception.

View Article and Find Full Text PDF

Replication complexes (RCs), formed by positive-strand (+) RNA viruses through rearrangements of host endomembranes, protect their replicating RNA from host innate immune defenses. We have shown that two evolutionarily conserved defense systems, autophagy and interferon (IFN), target viral RCs and inhibit viral replication collaboratively. However, the mechanism by which autophagy proteins target viral RCs and the role of IFN-inducible GTPases in the disruption of RCs remains poorly understood.

View Article and Find Full Text PDF

Severe COVID-19 is associated with epithelial and endothelial barrier dysfunction within the lung as well as in distal organs. While it is appreciated that an exaggerated inflammatory response is associated with barrier dysfunction, the triggers of vascular leak are unclear. Here, we report that cell-intrinsic interactions between the Spike (S) glycoprotein of SARS-CoV-2 and epithelial/endothelial cells are sufficient to induce barrier dysfunction in vitro and vascular leak in vivo, independently of viral replication and the ACE2 receptor.

View Article and Find Full Text PDF

SARS coronavirus 2 (SARS-CoV-2) has caused an ongoing global pandemic with significant mortality and morbidity. At this time, the only FDA-approved therapeutic for COVID-19 is remdesivir, a broad-spectrum antiviral nucleoside analog. Efficacy is only moderate, and improved treatment strategies are urgently needed.

View Article and Find Full Text PDF

Three directly acting antivirals (DAAs) demonstrated substantial reduction in COVID-19 hospitalizations and deaths in clinical trials. However, these agents did not completely prevent severe illness and are associated with cases of rebound illness and viral shedding. Combination regimens can enhance antiviral potency, reduce the emergence of drug-resistant variants, and lower the dose of each component in the combination.

View Article and Find Full Text PDF

Members of the mosquito-borne flavivirus genus such as dengue (DENV), West Nile (WNV), and Zika (ZIKV) viruses cause distinct diseases and affect different tissues. We previously found that the secreted flaviviral nonstructural protein 1 (NS1) interacts with endothelial cells and disrupts endothelial barrier function in a tissue-specific manner consistent with the disease tropism of the respective viruses. However, the underlying molecular mechanism of this tissue-specific NS1-endothelial cell interaction is not well understood.

View Article and Find Full Text PDF

Rapid nucleic acid testing is central to infectious disease surveillance. Here, we report an assay for rapid COVID-19 testing and its implementation in a prototype microfluidic device. The assay, which we named DISCoVER (for diagnostics with coronavirus enzymatic reporting), involves extraction-free sample lysis via shelf-stable and low-cost reagents, multiplexed isothermal RNA amplification followed by T7 transcription, and Cas13-mediated cleavage of a quenched fluorophore.

View Article and Find Full Text PDF

The COVID-19 pandemic is exacting an increasing toll worldwide, with new SARS-CoV-2 variants emerging that exhibit higher infectivity rates and that may partially evade vaccine and antibody immunity. Rapid deployment of non-invasive therapeutic avenues capable of preventing infection by all SARS-CoV-2 variants could complement current vaccination efforts and help turn the tide on the COVID-19 pandemic. Here, we describe a novel therapeutic strategy targeting the SARS-CoV-2 RNA using locked nucleic acid antisense oligonucleotides (LNA ASOs).

View Article and Find Full Text PDF
Article Synopsis
  • Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes a spectrum of symptoms ranging from mild illness to severe respiratory distress, highlighting the need to understand how host factors affect infection.
  • The study utilized genome-wide CRISPR screens in human lung cells to identify various host factors involved in SARS-CoV-2 interactions, including those related to transport, inflammation, and cell regulation.
  • Notably, the researchers found that mucins, which are high molecular weight proteins, play a key role in restricting SARS-CoV-2 infection and could serve as potential targets for new therapies.
View Article and Find Full Text PDF

The flavivirus nonstructural protein 1 (NS1) is secreted from infected cells and contributes to endothelial barrier dysfunction and vascular leak in a tissue-dependent manner. This phenomenon occurs in part via disruption of the endothelial glycocalyx layer (EGL) lining the endothelium. Additionally, we and others have shown that soluble DENV NS1 induces disassembly of intercellular junctions (IJCs), a group of cellular proteins critical for maintaining endothelial homeostasis and regulating vascular permeability; however, the specific mechanisms by which NS1 mediates IJC disruption remain unclear.

View Article and Find Full Text PDF

The dengue virus nonstructural protein 1 (NS1) is a secreted virulence factor that modulates complement, activates immune cells and alters endothelial barriers. The molecular basis of these events remains incompletely understood. Here we describe a functional high affinity complex formed between NS1 and human high-density lipoproteins (HDL).

View Article and Find Full Text PDF

Despite substantial morbidity and mortality, no therapeutic agents exist for treatment of dengue or Zika, and the currently available dengue vaccine is only recommended for dengue virus (DENV)-immune individuals. Thus, development of therapeutic and/or preventive drugs is urgently needed. DENV and Zika virus (ZIKV) nonstructural protein 1 (NS1) can directly trigger endothelial barrier dysfunction and induce inflammatory responses, contributing to vascular leak in vivo.

View Article and Find Full Text PDF

Conserved flavivirus protein holds potential as target for versatile vaccines and therapies.

View Article and Find Full Text PDF

Severe COVID-19 is associated with epithelial and endothelial barrier dysfunction within the lung as well as in distal organs. While it is appreciated that an exaggerated inflammatory response is associated with barrier dysfunction, the triggers of this pathology are unclear. Here, we report that cell-intrinsic interactions between the Spike (S) glycoprotein of SARS-CoV-2 and epithelial/endothelial cells are sufficient to trigger barrier dysfunction and vascular leak , independently of viral replication and the ACE2 receptor.

View Article and Find Full Text PDF

Decontaminating N95 respirators for reuse could mitigate shortages during the COVID-19 pandemic. Although the United States Center for Disease Control has identified Ultraviolet-C irradiation as one of the most promising methods for N95 decontamination, very few studies have evaluated the efficacy of Ultraviolet-C for SARS-CoV-2 inactivation. In addition, most decontamination studies are performed using mask coupons that do not recapitulate the complexity of whole masks.

View Article and Find Full Text PDF