Publications by authors named "Cesar Azorin-Molina"

Soil wind erosion is a primary cause of land degradation, which exerts profound adverse impacts on agricultural productivity. Because of limited observations, the long-term variability of wind erosion and its potential causes remain largely unknown for high-elevation areas, e.g.

View Article and Find Full Text PDF

State-of-the-art climate models project a substantial decline in precipitation for the Mediterranean region in the future. Supporting this notion, several studies based on observed precipitation data spanning recent decades have suggested a decrease in Mediterranean precipitation, with some attributing a large fraction of this change to anthropogenic influences. Conversely, certain researchers have underlined that Mediterranean precipitation exhibits considerable spatiotemporal variability driven by atmospheric circulation patterns maintaining stationarity over the long term.

View Article and Find Full Text PDF

This study assessed the projected near-surface wind speed (SWS) changes and variability over the Iberian Peninsula for the 21st century. Here, we compared Coupled Model Intercomparison Project Phase 6 global climate models (GCMs) with a higher spatial resolution regional climate model (RCM; ∼20 km), known as WRF-CESM2, which was created by a dynamic downscaling of the Community Earth System Model version 2 (CESM2) using the Weather Research and Forecasting (WRF) model. Our analysis found that the GCMs tended to overestimate observed SWS for 1985-2014, while the higher spatial resolution of the WRF-CESM2 did not improve the accuracy and underestimated the SWS magnitude.

View Article and Find Full Text PDF

We evaluate the performance of Coupled Model Intercomparison Project Phase 6 (CMIP6) models in simulating the observed global terrestrial near-surface wind speed (NSWS) and project its future changes under three different Shared Socioeconomic Pathways (SSPs). Results show that the CESM2 has the best ability in reproducing the observed NSWS trends, although all models examined are generally not doing well. Based on projections of CESM2, the global NSWS will decrease from 2021 to 2100 under all three SSPs.

View Article and Find Full Text PDF

Great attention has been paid to the long-term decline in terrestrial near-surface wind speed (SWS) in China. However, how the SWS varies with regions and seasons and what modulates these changes remain unclear. Based on quality-controlled and homogenized terrestrial SWS data from 596 stations, the covarying SWS patterns during the Asian Summer Monsoon (ASM) and the Asian Winter Monsoon (AWM) seasons are defined for China using empirical orthogonal function (EOF) analysis for 1961-2016.

View Article and Find Full Text PDF

Soil erosion is extreme in Mediterranean orchards due to management impact, high rainfall intensities, steep slopes and erodible parent material. Vall d'Albaida is a traditional fruit production area which, due to the Mediterranean climate and marly soils, produces sweet fruits. However, these highly productive soils are left bare under the prevailing land management and marly soils are vulnerable to soil water erosion when left bare.

View Article and Find Full Text PDF

We evaluated the response of the Earth land biomes to drought by correlating a drought index with three global indicators of vegetation activity and growth: vegetation indices from satellite imagery, tree-ring growth series, and Aboveground Net Primary Production (ANPP) records. Arid and humid biomes are both affected by drought, and we suggest that the persistence of the water deficit (i.e.

View Article and Find Full Text PDF