Arabidopsis plants were grown in white light (400-700 nm) or in white light supplemented with far-red (FR) light peaking at 730 nm. FR-enriched light induced the typical shade avoidance syndrome characterized by enhanced length of seedling hypocotyl and leaf petiole. FR supplementation also caused a noticeable decrease in the carotenoid and chlorophyll content that was attributable to a block of pigment accumulation during plant development.
View Article and Find Full Text PDFIncreasing aridity in the Mediterranean region will result in longer and recurrent drought. These changes could strongly modify plant defenses, endangering tree survival. We investigate the response of chemical defenses from central and specialized metabolism in Quercus pubescens Willd.
View Article and Find Full Text PDFIonising γ radiation produces reactive oxygen species by water radiolysis, providing an interesting model approach for studying oxidative stress in plants. Three-week old plants of Arabidopsis thaliana were exposed to a low dose rate (25 mGy h) of γ radiation for up to 21 days. This treatment had no effect on plant growth and morphology, but it induced chronic oxidation of lipids which was associated with an accumulation of reactive carbonyl species (RCS).
View Article and Find Full Text PDFWith climate change, an aggravation in summer drought is expected in the Mediterranean region. To assess the impact of such a future scenario, we compared the response of Quercus pubescens, a drought-resistant deciduous oak species, to long-term amplified drought (AD) (partial rain exclusion in natura for 10 years) and natural drought (ND). We studied leaf physiological and physico-chemical trait responses to ND and AD over the seasonal cycle, with a focus on chemical traits including major groups of central (photosynthetic pigments and plastoquinones) and specialized (tocochromanols, phenolic compounds, and cuticular waxes) metabolites.
View Article and Find Full Text PDFPlants, like most living organisms, spontaneously emit photons of visible light. This ultraweak endogenous chemiluminescence is linked to the oxidative metabolism, with lipid peroxidation constituting a major source of photons in plants. We imaged this signal using a very sensitive cooled CCD camera and analysed its spectral characteristics using bandpass interference filters.
View Article and Find Full Text PDFBecause they are highly unsaturated, plant lipids are sensitive to oxidation and constitute a primary target of reactive oxygen species. Therefore, quantification of lipid peroxidation provides a pertinent approach to evaluating oxidative stress in plants. Here, we describe a simple method to measure upstream products of the peroxidation of the major polyunsaturated fatty acids in plants, namely, linolenic acid (C18:3) and linoleic acid (C18:2).
View Article and Find Full Text PDFGuanosine pentaphosphate and tetraphosphate (together referred to as ppGpp) are hyperphosphorylated nucleotides found in bacteria and the chloroplasts of plants and algae. In plants and algae artificial ppGpp accumulation can inhibit chloroplast gene expression, and influence photosynthesis, nutrient remobilization, growth, and immunity. However, it is so far unknown whether ppGpp is required for abiotic stress acclimation in plants.
View Article and Find Full Text PDFLipid peroxidation is a primary event associated with oxidative stress in plants. This phenomenon secondarily generates bioactive and/or toxic compounds such as reactive carbonyl species (RCS), phytoprostanes, and phytofurans, as confirmed here in Arabidopsis plants exposed to photo-oxidative stress conditions. We analyzed the effects of exogenous applications of secondary lipid oxidation products on Arabidopsis plants by luminescence techniques.
View Article and Find Full Text PDFFree Radic Biol Med
November 2020
Tocochromanols (tocopherols, tocotrienols and plastochromanol-8), isoprenoid quinone (plastoquinone-9 and plastoquinol-9) and carotenoids (carotenes and xanthophylls), are lipid-soluble antioxidants in the chloroplasts, which play an important defensive role against photooxidative stress in plants. In this study, the interplay between the antioxidant activities of those compounds in excess light stress was analyzed in wild-type (WT) Arabidopsis thaliana and in a tocopherol cyclase mutant (vte1), a homogentisate phytyl transferase mutant (vte2) and a tocopherol cyclase overexpressor (VTE1oex). The results reveal a strategy of cooperation and replacement between α-tocopherol, plastochromanol-8, plastoquinone-9/plastoquinol-9 and zeaxanthin.
View Article and Find Full Text PDFPhotosynthesis is an essential pathway providing the chemical energy and reducing equivalents that sustain higher plant metabolism. It relies on sunlight, which is an inconstant source of energy that fluctuates in both intensity and spectrum. The fine and rapid tuning of the photosynthetic apparatus is essential to cope with changing light conditions and increase plant fitness.
View Article and Find Full Text PDFSinglet oxygen ( O ) is a by-product of photosynthesis that triggers a signalling pathway leading to stress acclimation or to cell death. By analyzing gene expressions in a O -overproducing Arabidopsis mutant (ch1) under different light regimes, we show here that the O signalling pathway involves the endoplasmic reticulum (ER)-mediated unfolded protein response (UPR). ch1 plants in low light exhibited a moderate activation of UPR genes, in particular bZIP60, and low concentrations of the UPR-inducer tunicamycin enhanced tolerance to photooxidative stress, together suggesting a role for UPR in plant acclimation to low O levels.
View Article and Find Full Text PDFPhotosynthesis produces organic carbon via a light-driven electron flow from HO to CO that passes through a pool of plastoquinone molecules. These molecules are either present in the photosynthetic thylakoid membranes, participating in photochemistry (photoactive pool), or stored (non-photoactive pool) in thylakoid-attached lipid droplets, the plastoglobules. The photoactive pool acts also as a signal of photosynthetic activity allowing the adaptation to changes in light condition.
View Article and Find Full Text PDFSinglet oxygen produced from triplet excited chlorophylls in photosynthesis is a signal molecule that can induce programmed cell death (PCD) through the action of the OXIDATIVE STRESS INDUCIBLE 1 (OXI1) kinase. Here, we identify two negative regulators of light-induced PCD that modulate expression: DAD1 and DAD2, homologs of the human antiapoptotic protein DEFENDER AGAINST CELL DEATH. Overexpressing in Arabidopsis () increased plant sensitivity to high light and induced early senescence of mature leaves.
View Article and Find Full Text PDFIn the last common enzymatic step of tetrapyrrole biosynthesis, prior to the branching point leading to the biosynthesis of heme and chlorophyll, protoporphyrinogen IX (Protogen) is oxidised to protoporphyrin IX (Proto) by protoporphyrinogen IX oxidase (PPX). The absence of thylakoid-localised plastid terminal oxidase 2 (PTOX2) and cytochrome complex in the mutant, results in almost complete reduction of the plastoquinone pool (PQ pool) in light. Here we show that the lack of oxidised PQ impairs PPX function, leading to accumulation and subsequently uncontrolled oxidation of Protogen to non-metabolised Proto.
View Article and Find Full Text PDFWhen exposed to unfavorable environmental conditions, plants can absorb light energy in excess of their photosynthetic capacities, with the surplus energy leading to the production of reactive oxygen species and photooxidative stress. Subsequent lipid peroxidation generates toxic reactive carbonyl species whose accumulation culminates in cell death. β-Cyclocitral, an oxidized by-product of β-carotene generated in the chloroplasts, mediates a protective retrograde response that lowers the levels of toxic peroxides and carbonyls, limiting damage to intracellular components.
View Article and Find Full Text PDFPrenylquinols (tocochromanols and plastoquinols) serve as efficient physical and chemical quenchers of singlet oxygen ( O ) formed during high light stress in higher plants. Although quenching of O by prenylquinols has been previously studied, direct evidence for chemical quenching of O by plastoquinols and their oxidation products is limited in vivo. In the present study, the role of plastoquinol-9 (PQH -9) in chemical quenching of O was studied in Arabidopsis thaliana lines overexpressing the SOLANESYL DIPHOSPHATE SYNTHASE 1 gene (SPS1oex) involved in PQH -9 and plastochromanol-8 biosynthesis.
View Article and Find Full Text PDFThe Arabidopsis vte1 mutant is devoid of tocopherol and plastochromanol (PC-8). When exposed to excess light energy, vte1 produced more singlet oxygen ( O ) and suffered from extensive oxidative damage compared with the wild type. Here, we show that overexpressing the solanesyl diphosphate synthase 1 (SPS1) gene in vte1 induced a marked accumulation of total plastoquinone (PQ-9) and rendered the vte1 SPS1oex plants tolerant to photooxidative stress, indicating that PQ-9 can replace tocopherol and PC-8 in photoprotection.
View Article and Find Full Text PDFSinglet oxygen ( O ) signalling in plants is essential to trigger both acclimatory mechanisms and programmed cell death under high light stress. However, because of its chemical features, O requires mediators, and the players involved in this pathway are largely unknown. The β-carotene oxidation product, β-cyclocitral, is one such mediator.
View Article and Find Full Text PDFPlastoquinone-9 is known as a photosynthetic electron carrier to which has also been attributed a role in the regulation of gene expression and enzyme activities via its redox state. Here, we show that it acts also as an antioxidant in plant leaves, playing a central photoprotective role. When Arabidopsis plants were suddenly exposed to excess light energy, a rapid consumption of plastoquinone-9 occurred, followed by a progressive increase in concentration during the acclimation phase.
View Article and Find Full Text PDFIsolation of Arabidopsis mutants that maintain stomata open all night long credits the existence of dedicated regulators for stomatal closure in darkness.
View Article and Find Full Text PDFPlants display a remarkable diversity of thioredoxins (Trxs), reductases controlling the thiol redox status of proteins. The physiological function of many of them remains elusive, particularly for plastidial Trxs f and m, which are presumed based on biochemical data to regulate photosynthetic reactions and carbon metabolism. Recent reports revealed that Trxs f and m participate in vivo in the control of starch metabolism and cyclic photosynthetic electron transfer around photosystem I, respectively.
View Article and Find Full Text PDFPlant Signal Behav
December 2014
Under stress conditions that bring about excessive absorption of light energy in the chloroplasts, the formation of singlet oxygen ( (1)O2) can be strongly enhanced, triggering programmed cell death. However, the (1)O2 signaling pathway can also lead to acclimation to photooxidative stress, when (1)O2 is produced in relatively low amounts. This acclimatory response is associated with a strong downregulation of the jasmonate biosynthesis pathway and the maintenance of low jasmonate levels, even under high light stress conditions that normally induce jasmonate synthesis.
View Article and Find Full Text PDFPlant Physiol
September 2013
The fungal elicitor cryptogein triggers a light-dependent hypersensitive response in tobacco (Nicotiana tabacum). To assess the effect of light on this nonhost resistance in more detail, we studied various aspects of the response under dark and light conditions using the tobacco-cryptogein experimental system. Here, we show that light drastically alters the plant's transcriptional response to cryptogein, notably by dampening the induction of genes involved in multiple processes, such as ethylene biosynthesis, secondary metabolism, and glutathione turnover.
View Article and Find Full Text PDF