Publications by authors named "Brian D Slaughter"

Serial capture affinity purification (SCAP) is a powerful method to isolate a specific protein complex. When combined with cross-linking mass spectrometry and computational approaches, one can build an integrated structural model of the isolated complex. Here, we applied SCAP to dissect a subpopulation of WDR76 in complex with SPIN1, a histone reader that recognizes trimethylated histone H3 lysine4 (H3K4me3).

View Article and Find Full Text PDF

While the accessibility of enhancers is dynamically regulated during development, promoters tend to be constitutively accessible and poised for activation by paused Pol II. By studying Lola-I, a Drosophila zinc finger transcription factor, we show here that the promoter state can also be subject to developmental regulation independently of gene activation. Lola-I is ubiquitously expressed at the end of embryogenesis and causes its target promoters to become accessible and acquire paused Pol II throughout the embryo.

View Article and Find Full Text PDF

Signaling pathways regulate the patterns of Hox gene expression that underlie their functions in the specification of axial identity. Little is known about the properties of cis-regulatory elements and underlying transcriptional mechanisms that integrate graded signaling inputs to coordinately control Hox expression. Here, we optimized a single molecule fluorescent in situ hybridization (smFISH) technique with probes spanning introns to evaluate how three shared retinoic acid response element (RARE)-dependent enhancers in the Hoxb cluster regulate patterns of nascent transcription in vivo at the level of single cells in wild-type and mutant embryos.

View Article and Find Full Text PDF

Unlabelled: WDR76 is a multifunctional protein involved in many cellular functions. With a diverse and complicated protein interaction network, dissecting the structure and function of specific WDR76 complexes is needed. We previously demonstrated the ability of the Serial Capture Affinity Purification (SCAP) method to isolate specific complexes by introducing two proteins of interest as baits at the same time.

View Article and Find Full Text PDF
Article Synopsis
  • Circadian rhythms are essential for survival, yet cave-dwelling organisms like the Mexican tetra (Astyanax mexicanus) show significant changes due to their dark, stable environments.
  • Research on these cavefish reveals that evolution has led to disruptions in their internal biological clocks, with changes in how genes related to circadian rhythms are expressed.
  • Specific gene mutations, such as in aanat2 and rorca, impair sleep regulation and mirror the altered sleep patterns observed in cave populations, highlighting different evolutionary pathways that have affected their circadian behaviors.
View Article and Find Full Text PDF

The Elongin complex was originally identified as an RNA polymerase II (RNAPII) elongation factor and subsequently as the substrate recognition component of a Cullin-RING E3 ubiquitin ligase. More recent evidence indicates that the Elongin ubiquitin ligase assembles with the Cockayne syndrome B helicase (CSB) in response to DNA damage and can target stalled polymerases for ubiquitylation and removal from the genome. In this report, we present evidence that the CSB-Elongin ubiquitin ligase pathway has roles beyond the DNA damage response in the activation of RNAPII-mediated transcription.

View Article and Find Full Text PDF

Numerous experimental approaches exist to study interactions between two subunits of a large macromolecular complex. However, most methods do not provide spatial and temporal information about binding, which are critical for dissecting the mechanism of assembly of nanosized complexes . While recent advances in super-resolution microscopy techniques have provided insights into biological structures beyond the diffraction limit, most require extensive expertise and/or special sample preparation, and it is a challenge to extend beyond binary, two color experiments.

View Article and Find Full Text PDF

Streamlined characterization of protein complexes remains a challenge for the study of protein interaction networks. Here we describe serial capture affinity purification (SCAP), in which two separate proteins are tagged with either the HaloTag or the SNAP-tag, permitting a multistep affinity enrichment of specific protein complexes. The multifunctional capabilities of this protein-tagging system also permit in vivo validation of interactions using acceptor photobleaching Förster resonance energy transfer and fluorescence cross-correlation spectroscopy quantitative imaging.

View Article and Find Full Text PDF

Reduced parasitic infection rates in the developed world are suspected to underlie the rising prevalence of autoimmune disorders. However, the long-term evolutionary consequences of decreased parasite exposure on an immune system are not well understood. We used the Mexican tetra Astyanax mexicanus to understand how loss of parasite diversity influences the evolutionary trajectory of the vertebrate immune system, by comparing river with cave morphotypes.

View Article and Find Full Text PDF

The kinetochore is a large molecular machine that attaches chromosomes to microtubules and facilitates chromosome segregation. The kinetochore includes submodules that associate with the centromeric DNA and submodules that attach to microtubules. Additional copies of several submodules of the kinetochore are added during anaphase, including the microtubule binding module Ndc80.

View Article and Find Full Text PDF

Bipolar spindle formation in yeast requires insertion of centrosomes (known as spindle pole bodies [SPBs]) into fenestrated regions of the nuclear envelope (NE). Using structured illumination microscopy and bimolecular fluorescence complementation, we map protein distribution at SPB fenestrae and interrogate protein-protein interactions with high spatial resolution. We find that the Sad1-UNC-84 (SUN) protein Mps3 forms a ring-like structure around the SPB, similar to toroids seen for components of the SPB insertion network (SPIN).

View Article and Find Full Text PDF

Elongin A binds to Elongins B and C to form the RNA polymerase II transcription elongation factor Elongin. It also functions as the substrate recognition subunit of a ubiquitin ligase that is formed by binding of Elongin to Cullin protein CUL5 and RING finger protein RBX2 and that targets RNA polymerase II for ubiquitination. In this article, we describe use of acceptor photobleaching fluorescence resonance energy transfer (AP-FRET) and laser microirradiation-based assays to study regulated assembly of the Elongin ubiquitin ligase and its recruitment to regions of localized DNA damage.

View Article and Find Full Text PDF

The Saccharomyces cerevisiae and Schizosaccharomyces pombe genomes encode a single SUN domain-containing protein, Mps3 and Sad1, respectively. Both localize to the yeast centrosome (known as the spindle pole body, SPB) and are essential for bipolar spindle formation. In addition, Mps3 and Sad1 play roles in chromosome organization in both mitotic and meiotic cells that are independent of their SPB function.

View Article and Find Full Text PDF

Biologists have long been fascinated with the organization and function of intricate protein complexes. Therefore, techniques for precisely imaging protein complexes and the location of proteins within these complexes are critically important and often require multidisciplinary collaboration. A challenge in these explorations is the limited resolution of conventional light microscopy.

View Article and Find Full Text PDF

Nuclear pore complexes play central roles as gatekeepers of RNA and protein transport between the cytoplasm and nucleoplasm. However, their large size and dynamic nature have impeded a full structural and functional elucidation. Here we determined the structure of the entire 552-protein nuclear pore complex of the yeast Saccharomyces cerevisiae at sub-nanometre precision by satisfying a wide range of data relating to the molecular arrangement of its constituents.

View Article and Find Full Text PDF

The kinetochore is a large, evolutionarily conserved protein structure that connects chromosomes with microtubules. During chromosome segregation, outer kinetochore components track depolymerizing ends of microtubules to facilitate the separation of chromosomes into two cells. In budding yeast, each chromosome has a point centromere upon which a single kinetochore is built, which attaches to a single microtubule.

View Article and Find Full Text PDF

has diverse functional roles in differentiation and development. We identify and characterize properties of regions bound by HOXA1 on a genome-wide basis in differentiating mouse ES cells. HOXA1-bound regions are enriched for clusters of consensus binding motifs for HOX, PBX, and MEIS, and many display co-occupancy of PBX and MEIS.

View Article and Find Full Text PDF

The synaptonemal complex (SC), a structure highly conserved from yeast to mammals, assembles between homologous chromosomes and is essential for accurate chromosome segregation at the first meiotic division. In , many SC components and their general positions within the complex have been dissected through a combination of genetic analyses, superresolution microscopy, and electron microscopy. Although these studies provide a 2D understanding of SC structure in , the inability to optically resolve the minute distances between proteins in the complex has precluded its 3D characterization.

View Article and Find Full Text PDF

Structural maintenance of chromosome complexes, such as cohesin, have been implicated in a wide variety of chromatin-dependent functions such as genome organization, replication, and gene expression. How these complexes find their sites of association and affect local chromosomal processes is not well understood. We report that condensin II, a complex distinct from cohesin, physically interacts with TFIIIC, and they both colocalize at active gene promoters in the mouse and human genomes, facilitated by interaction between NCAPD3 and the epigenetic mark H3K4me3.

View Article and Find Full Text PDF

() is one of the most rapidly induced genes in ES cell differentiation and it is the earliest expressed Hox gene in the mouse embryo. In this study, we used genomic approaches to identify Hoxa1-bound regions during early stages of ES cell differentiation into the neuro-ectoderm. Within 2 h of retinoic acid treatment, Hoxa1 is rapidly recruited to target sites that are associated with genes involved in regulation of pluripotency, and these genes display early changes in expression.

View Article and Find Full Text PDF

Elongin A performs dual functions as the transcriptionally active subunit of RNA polymerase II (Pol II) elongation factor Elongin and as the substrate recognition subunit of a Cullin-RING E3 ubiquitin ligase that ubiquitylates Pol II in response to DNA damage. Assembly of the Elongin A ubiquitin ligase and its recruitment to sites of DNA damage is a tightly regulated process induced by DNA-damaging agents and α-amanitin, a drug that induces Pol II stalling. In this study, we demonstrate (i) that Elongin A and the ubiquitin ligase subunit CUL5 associate in cells with the Cockayne syndrome B (CSB) protein and (ii) that this interaction is also induced by DNA-damaging agents and α-amanitin.

View Article and Find Full Text PDF

Understanding the protein composition of the inner nuclear membrane (INM) is fundamental to elucidating its role in normal nuclear function and in disease; however, few tools exist to examine the INM in living cells, and the INM-specific proteome remains poorly characterized. Here, we adapted split green fluorescent protein (split-GFP) to systematically localize known and predicted integral membrane proteins in Saccharomyces cerevisiae to the INM as opposed to the outer nuclear membrane. Our data suggest that components of the endoplasmic reticulum (ER) as well as other organelles are able to access the INM, particularly if they contain a small extraluminal domain.

View Article and Find Full Text PDF

How a transient experience creates an enduring yet dynamic memory remains an unresolved issue in studies of memory. Experience-dependent aggregation of the RNA-binding protein CPEB/Orb2 is one of the candidate mechanisms of memory maintenance. Here, using tools that allow rapid and reversible inactivation of Orb2 protein in neurons, we find that Orb2 activity is required for encoding and recall of memory.

View Article and Find Full Text PDF

Proteins that respond to DNA damage play critical roles in normal and diseased states in human biology. Studies have suggested that the S. cerevisiae protein CMR1/YDL156w is associated with histones and is possibly associated with DNA repair and replication processes.

View Article and Find Full Text PDF