98%
921
2 minutes
20
Biologists have long been fascinated with the organization and function of intricate protein complexes. Therefore, techniques for precisely imaging protein complexes and the location of proteins within these complexes are critically important and often require multidisciplinary collaboration. A challenge in these explorations is the limited resolution of conventional light microscopy. However, a new microscopic technique has circumvented this resolution limit by making the biological sample larger, thus allowing for super-resolution of the enlarged structure. This 'expansion' is accomplished by embedding the sample in a hydrogel that, when exposed to water, uniformly expands. Here, we present a protocol that transforms thick expansion microscopy (ExM) hydrogels into sections that are physically expanded four times, creating samples that are compatible with the super-resolution technique structured illumination microscopy (SIM). This super-resolution ExM method (ExM-SIM) allows the analysis of the three-dimensional (3D) organization of multiprotein complexes at ~30-nm lateral (xy) resolution. This protocol details the steps necessary for analysis of protein localization using ExM-SIM, including antibody labeling, hydrogel preparation, protease digestion, post-digestion antibody labeling, hydrogel embedding with tissue-freezing medium (TFM), cryosectioning, expansion, image alignment, and particle averaging. We have used this approach for 3D mapping of in situ protein localization in the Drosophila synaptonemal complex (SC), but it can be readily adapted to study thick tissues such as brain and organs in various model systems. This procedure can be completed in 5 d.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1038/s41596-018-0023-8 | DOI Listing |
Autophagy
September 2025
Department of Biochemistry and Molecular Biology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.
Macroautophagy/autophagy is an evolutionarily conserved process through which cells degrade cytoplasmic substances via autophagosomes. During the initiation of autophagosome formation, the ULK/Atg1 complex serves as a scaffold that recruits and regulates downstream ATG/Atg proteins and ATG9/Atg9-containing vesicles. Despite the essential role of the ULK/Atg1 complex, its components have changed during evolution; the ULK complex in mammals consists of ULK1 (or ULK2), RB1CC1, ATG13, and ATG101, whereas the Atg1 complex in the yeast lacks Atg101 but instead has Atg29 and Atg31 along with Atg17.
View Article and Find Full Text PDFJ Cosmet Dermatol
September 2025
Laboratoires VIVACY, France.
Background: Superficial injection of hyaluronic acid (HA)-based gels is a widely used method to restore skin quality and achieve a more youthful appearance. While the clinical benefits of such procedures are well established, their biological mechanisms of action remain poorly understood.
Objective: This study aimed to evaluate the effectiveness of two cross-linked HA gels (IPN-12.
Cephalalgia
September 2025
Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, IA, USA.
Migraine is a complex neurological disorder involving multiple neuropeptides that modulate nociceptive and sensory pathways. The most studied peptide is calcitonin gene-related peptide (CGRP), which is a well-established migraine trigger and therapeutic target. Recently, another peptide, pituitary adenylate cyclase-activating polypeptide (PACAP), has emerged as an alternative target for migraine therapeutics.
View Article and Find Full Text PDFJ Am Chem Soc
September 2025
Kekulé Institute for Organic Chemistry and Biochemistry, University of Bonn,Gerhard-Domagk-Straße 1,Bonn 53121,Germany.
Terpene synthases produce a remarkable structural diversity from acyclic precursors through complex carbocation cascades. Here, we report the crystal structure of the bacterial sesterterpene synthase StvirS bound to geranylfarnesyl thiopyrophosphate (GFSPP), revealing a preorganized active site that enforces a defined folding of the C25 backbone. Guided by this structure, active-site engineering at 11 positions yielded 23 enzyme variants and 13 new sesterterpenes.
View Article and Find Full Text PDFPlant Cell Environ
September 2025
State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Ministry of Education of China-Hebei Province Joint Innovation Center for Efficient Green Vegetable Industry, International Joint R & D Center of Hebei Prov
As essential sources of vegetables, oilseeds, and forage, Brassica crops exhibit complex epigenetic regulation mechanisms involving histone modifications, DNA modifications, RNA modifications, noncoding RNAs, and chromatin remodelling. The agronomic traits and environmental adaptability of crops are regulated by both genetic and epigenetic mechanisms, while epigenetic variation can affect plant phenotypes without changing gene sequences. Furthermore, the impact of epigenetic modifications on plant phenotype has accelerated the crop breeding process.
View Article and Find Full Text PDF