Entropy (Basel)
June 2024
Rooted in dynamic systems theory, convergent cross mapping (CCM) has attracted increased attention recently due to its capability in detecting linear and nonlinear causal coupling in both random and deterministic settings. One limitation with CCM is that it uses both past and future values to predict the current value, which is inconsistent with the widely accepted definition of causality, where it is assumed that the future values of one process cannot influence the past of another. To overcome this obstacle, in our previous research, we introduced the concept of causalized convergent cross mapping (cCCM), where future values are no longer used to predict the current value.
View Article and Find Full Text PDFConvergent cross-mapping (CCM) has attracted increased attention recently due to its capability to detect causality in nonseparable systems under deterministic settings, which may not be covered by the traditional Granger causality. From an information-theoretic perspective, causality is often characterized as the directed information (DI) flowing from one side to the other. As information is essentially nondeterministic, a natural question is: does CCM measure DI flow? Here, we first causalize CCM so that it aligns with the presumption in causality analysis-the future values of one process cannot influence the past of the other, and then establish and validate the approximate equivalence of causalized CCM (cCCM) and DI under Gaussian variables through both theoretical derivations and fMRI-based brain network causality analysis.
View Article and Find Full Text PDFPhysiol Meas
November 2023
Human activity recognition (HAR) has become increasingly important in healthcare, sports, and fitness domains due to its wide range of applications. However, existing deep learning based HAR methods often overlook the challenges posed by the diversity of human activities and data quality, which can make feature extraction difficult. To address these issues, we propose a new neural network model called MAG-Res2Net, which incorporates the Borderline-SMOTE data upsampling algorithm, a loss function combination algorithm based on metric learning, and the Lion optimization algorithm.
View Article and Find Full Text PDFAlzheimers Dement
January 2024
Background: Early discrimination and prediction of cognitive decline are crucial for the study of neurodegenerative mechanisms and interventions to promote cognitive resiliency.
Methods: Our research is based on resting-state electroencephalography (EEG) and the current dataset includes 137 consensus-diagnosed, community-dwelling Black Americans (ages 60-90 years, 84 healthy controls [HC]; 53 mild cognitive impairment [MCI]) recruited through Wayne State University and Michigan Alzheimer's Disease Research Center. We conducted multiscale analysis on time-varying brain functional connectivity and developed an innovative soft discrimination model in which each decision on HC or MCI also comes with a connectivity-based score.