Publications by authors named "Birgit Stallmeyer"

Background: Nuclear receptors, including steroidogenic factor 1 (NR5A1/SF1) and the androgen receptor (AR), are transcription factors regulating physiological processes, e.g., reproduction.

View Article and Find Full Text PDF

In eukaryotes, the nucleocytoplasmic export of bulk poly(A)-mRNAs through the nuclear pore complex is mediated by the ubiquitously expressed NXT1-NXF1 heterodimer. In humans, NXT1 has an X-chromosomal paralog, NXT2, which exhibits testis-enriched expression, suggesting a role in spermatogenesis. Here, we report the in vivo interaction of NXT2 with crucial components of the nuclear export machinery, including NXF1, the testis-specific NXF1 paralogs NXF2 and NXF3, and nuclear pore complex proteins.

View Article and Find Full Text PDF

Male infertility has been linked to M1AP. In mice, M1AP interacts with the ZZS proteins SHOC1/TEX11/SPO16, promoting DNA class I crossover formation during meiosis. To determine whether M1AP and ZZS proteins are involved in human male infertility by recombination failure, we screened for biallelic/hemizygous loss-of-function (LoF) variants in the human genes to select men with presumed protein deficiency (N = 24).

View Article and Find Full Text PDF

piRNAs are crucial for transposon silencing, germ cell maturation, and fertility in male mice. Here, we report on the genetic landscape of piRNA dysfunction in humans and present 39 infertile men carrying biallelic variants in 14 different piRNA pathway genes, including PIWIL1, GTSF1, GPAT2, MAEL, TDRD1, and DDX4. In some affected men, the testicular phenotypes differ from those of the respective knockout mice and range from complete germ cell loss to the production of a few morphologically abnormal sperm.

View Article and Find Full Text PDF

Male infertility affects approximately 17% of all men and represents a complex disorder in which not only semen parameters such as sperm motility, morphology, and number of sperm are highly variable, but also testicular phenotypes range from normal spermatogenesis to complete absence of germ cells. Genetic factors significantly contribute to the disease but chromosomal aberrations, mostly Klinefelter syndrome, and microdeletions of the Y-chromosome have remained the only diagnostically and clinically considered genetic causes. Monogenic causes remain understudied and, thus, often unidentified, leaving the majority of the male factor couple infertility pathomechanistically unexplained.

View Article and Find Full Text PDF

In the male mouse germ line, PIWI-interacting RNAs (piRNAs), bound by the PIWI protein MIWI2 (PIWIL4), guide DNA methylation of young active transposons through SPOCD1. However, the underlying mechanisms of SPOCD1-mediated piRNA-directed transposon methylation and whether this pathway functions to protect the human germ line remain unknown. We identified loss-of-function variants in human SPOCD1 that cause defective transposon silencing and male infertility.

View Article and Find Full Text PDF

The infertility of many couples rests on an enigmatic dysfunction of the man's sperm. To gain insight into the underlying pathomechanisms, we assessed the function of the sperm-specific multisubunit CatSper-channel complex in the sperm of almost 2,300 men undergoing a fertility workup, using a simple motility-based test. We identified a group of men with normal semen parameters but defective CatSper function.

View Article and Find Full Text PDF

Background: Infertility affects around 15% of all couples worldwide and is increasingly linked to variants in genes specifically expressed in the testis. Well-established causes of male infertility include pathogenic variants in the genes TEX11, TEX14, and TEX15, while few studies have recently reported variants in TEX13B, TEX13C, FAM9A (TEX39A), and FAM9B (TEX39B).

Objectives: We aimed at screening for novel potential candidate genes among the human TEX ("testis expressed") genes as well as verifying previously described disease associations in this set of genes.

View Article and Find Full Text PDF

Study Question: What is the impact of variants in the genes INSL3 (Insulin Like 3) and RXFP2 (Relaxin Family Peptide Receptor 2), respectively, on cryptorchidism and male infertility?

Summary Answer: Bi-allelic loss-of-function (LoF) variants in INSL3 and RXFP2 result in bilateral cryptorchidism and male infertility, whereas heterozygous variant carriers are phenotypically unaffected.

What Is Known Already: The small heterodimeric peptide INSL3 and its G protein-coupled receptor RXFP2 play a major role in the first step of the biphasic descent of the testes, and variants in the INSL3 and RXFP2 genes have long been implicated in inherited cryptorchidism. However, only one single homozygous missense variant in RXFP2 has clearly been linked to familial bilateral cryptorchidism, so the effects of bi-allelic variants in INSL3 and heterozygous variants in both genes on cryptorchidism and male infertility remain unclear.

View Article and Find Full Text PDF

Non-obstructive azoospermia, the absence of sperm in the ejaculate due to disturbed spermatogenesis, represents the most severe form of male infertility. De novo microdeletions of the Y-chromosomal AZFa region are one of few well-established genetic causes for NOA and are routinely analysed in the diagnostic workup of affected men. So far, it is unclear which of the three genes located in the AZFa chromosomal region is indispensible for germ cell maturation.

View Article and Find Full Text PDF

The Phosphatidylinositol 3-phosphate 5-kinase Type III PIKfyve is the main source for selectively generated phosphatidylinositol 3,5-bisphosphate (PI(3,5)P), a known regulator of membrane protein trafficking. PI(3,5)P facilitates the cardiac KCNQ1/KCNE1 channel plasma membrane abundance and therewith increases the macroscopic current amplitude. Functional-physical interaction of PI(3,5)P with membrane proteins and its structural impact is not sufficiently understood.

View Article and Find Full Text PDF

Study Question: Is the vertebrate protein Dead end (DND1) a causative factor for human infertility and can novel in vivo assays in zebrafish help in evaluating this?

Summary Answer: Combining patient genetic data with functional in vivo assays in zebrafish reveals a possible role for DND1 in human male fertility.

What Is Known Already: About 7% of the male population is affected by infertility but linking specific gene variants to the disease is challenging. The function of the DND1 protein was shown to be critical for germ cell development in several model organisms but a reliable and cost-effective method for evaluating the activity of the protein in the context of human male infertility is still missing.

View Article and Find Full Text PDF

Objective: To study the impact of Doublesex and mab-3-related transcription factor 1 (DMRT1) gene variants on the encoded protein's function and the variants' pathogenic relevance for isolated male infertility caused by azoospermia.

Design: This study established a novel luciferase assay for DMRT1 missense variants using 2 different target promotors and validated the assay by analyzing previously published variants associated with differences in sex development.

Setting: University genetics research institute and tertiary referral center for couples' infertility.

View Article and Find Full Text PDF

Cav1.3 voltage-gated L-type calcium channels (LTCCs) are involved in cardiac pacemaking, hearing and hormone secretion, but are also expressed postsynaptically in neurons. So far, homozygous loss of function mutations in encoding the Cav1.

View Article and Find Full Text PDF

Infertility affects around 7% of the male population and can be due to severe spermatogenic failure (SPGF), resulting in no or very few sperm in the ejaculate. We initially identified a homozygous frameshift variant in FKBP6 in a man with extreme oligozoospermia. Subsequently, we screened a total of 2,699 men with SPGF and detected rare bi-allelic loss-of-function variants in FKBP6 in five additional persons.

View Article and Find Full Text PDF

Background: Crypto- and azoospermia (very few/no sperm in the semen) are main contributors to male factor infertility. Genetic causes for spermatogenic failure (SPGF) include Klinefelter syndrome and Y-chromosomal azoospermia factor microdeletions, and CFTR mutations for obstructive azoospermia (OA). However, the majority of cases remain unexplained because monogenic causes are not analysed.

View Article and Find Full Text PDF
Article Synopsis
  • Brugada syndrome (BrS) is a serious heart condition linked to sudden death in young adults, with few known genetic factors beyond the SCN5A gene.
  • A large study involving 2,820 BrS cases and 10,001 controls revealed 21 genetic signals across 12 locations, suggesting a strong genetic component to the disorder.
  • Key findings highlight the importance of transcription regulation in BrS development and introduce microtubule-related mechanisms that affect the expression of a key cardiac protein, shedding light on the disorder's genetic and molecular basis.
View Article and Find Full Text PDF

Background: Desmin is the major intermediate filament (IF) protein in human heart and skeletal muscle. So-called 'desminopathies' are disorders due to pathogenic variants in the DES gene and are associated with skeletal myopathies and/or various types of cardiomyopathies. So far, only a limited number of DES pathogenic variants have been identified and functionally characterized.

View Article and Find Full Text PDF

Complex neuropsychiatric-cardiac syndromes can be genetically determined. For the first time, the authors present a syndromal form of short QT syndrome in a 34-year-old German male patient with extracardiac features with predominant psychiatric manifestation, namely a severe form of secondary high-functioning autism spectrum disorder (ASD), along with affective and psychotic exacerbations, and severe dental enamel defects (with rapid wearing off his teeth) due to a heterozygous loss-of-function mutation in the gene (NM_000719.6: c.

View Article and Find Full Text PDF
Article Synopsis
  • Strict guidelines can make it hard to tell if certain genetic changes are harmful for conditions like long QT syndrome and Brugada syndrome, leading to many unclear results.
  • Scientists compared genetic data from patients with these conditions to other population data to create better rules that help identify which genetic changes are serious.
  • Their new approach showed that they could find more harmful genetic variants in European patients, making genetic testing for these heart diseases more accurate and reliable.
View Article and Find Full Text PDF

Despite recent progress in the understanding of cardiac ion channel function and its role in inherited forms of ventricular arrhythmias, the molecular basis of cardiac conduction disorders often remains unresolved. We aimed to elucidate the genetic background of familial atrioventricular block (AVB) using a whole exome sequencing (WES) approach. In monozygotic twins with a third-degree AVB and in another, unrelated family with first-degree AVB, we identified a heterozygous nonsense mutation in the POPDC2 gene causing a premature stop at position 188 (POPDC2), deleting parts of its cAMP binding-domain.

View Article and Find Full Text PDF

Background: Long QT syndrome (LQTS) is a rare genetic disorder and a major preventable cause of sudden cardiac death in the young. A causal rare genetic variant with large effect size is identified in up to 80% of probands (genotype positive) and cascade family screening shows incomplete penetrance of genetic variants. Furthermore, a proportion of cases meeting diagnostic criteria for LQTS remain genetically elusive despite genetic testing of established genes (genotype negative).

View Article and Find Full Text PDF

Background: Insight into type 5 long QT syndrome (LQT5) has been limited to case reports and small family series. Improved understanding of the clinical phenotype and genetic features associated with rare variants implicated in LQT5 was sought through an international multicenter collaboration.

Methods: Patients with either presumed autosomal dominant LQT5 (N = 229) or the recessive Type 2 Jervell and Lange-Nielsen syndrome (N = 19) were enrolled from 22 genetic arrhythmia clinics and 4 registries from 9 countries.

View Article and Find Full Text PDF