A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Genetic Architecture of Azoospermia-Time to Advance the Standard of Care. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background: Crypto- and azoospermia (very few/no sperm in the semen) are main contributors to male factor infertility. Genetic causes for spermatogenic failure (SPGF) include Klinefelter syndrome and Y-chromosomal azoospermia factor microdeletions, and CFTR mutations for obstructive azoospermia (OA). However, the majority of cases remain unexplained because monogenic causes are not analysed.

Objective: To elucidate the monogenic contribution to azoospermia by prospective exome sequencing and strict application of recent clinical guidelines.

Design, Setting, And Participants: Since January 2017, we studied crypto- and azoospermic men without chromosomal aberrations and Y-chromosomal microdeletions attending the Centre of Reproductive Medicine and Andrology, Münster.

Outcome Measurements And Statistical Analysis: We performed exome sequencing in 647 men, analysed 60 genes having at least previous limited clinical validity, and strictly assessed variants according to clinical guidelines.

Results And Limitations: Overall, 55 patients (8.5%) with diagnostic genetic variants were identified. Of these patients, 20 (3.1%) carried mutations in CFTR or ADGRG2, and were diagnosed with OA. In 35 patients (5.4%) with SPGF, mutations in 20 different genes were identified. According to ClinGen criteria, 19 of the SPGF genes now reach at least moderate clinical validity. As limitations, only one transcript per gene was considered, and the list of genes is increasing rapidly so cannot be exhaustive.

Conclusions: The number of diagnostic genes in crypto-/azoospermia was almost doubled to 21 using exome-based analyses and clinical guidelines. Application of this procedure in routine diagnostics will significantly improve the diagnostic yield and clinical workup as the results indicate the success rate of testicular sperm extraction.

Patient Summary: When no sperm are found in the semen, a man cannot conceive naturally. The causes are often unknown, but genetics play a major role. We searched for genetic variants in a large group of patients and found causal mutations for one in 12 men; these predict the chances for fatherhood.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.eururo.2022.05.011DOI Listing

Publication Analysis

Top Keywords

sperm semen
8
exome sequencing
8
clinical validity
8
genetic variants
8
clinical
6
genes
5
genetic
4
genetic architecture
4
architecture azoospermia-time
4
azoospermia-time advance
4

Similar Publications