Legume plants form specific organs on their root system, the nitrogen-fixing nodules, thanks to a symbiotic interaction with soil bacteria collectively named rhizobia. Rhizobia, however, do not only induce the formation of these nodule organs but also modulate root system architecture. We identified in Medicago truncatula a previously unnoticed increase in the root stele diameter occurring upon rhizobium inoculation.
View Article and Find Full Text PDFThe nitrogen (N) fertilization form and plant energy status are known to significantly influence plant responses to elevated atmospheric carbon dioxide (CO) concentrations. However, a close examination of the interplay between N sources under contrasting light intensity has been notably absent in the literature. In this study, we conducted a factorial experiment with rice plants involving two different light intensities (150 and 300 µmol m s), inorganic N sources [nitrate (N-NO) or ammonium nitrate (N-NHNO)] at varying CO levels (410 and 700 parts per million, ppm).
View Article and Find Full Text PDFChassis strains, derived from Streptomyces coelicolor M145, deleted for one or more of its four main specialized metabolites biosynthetic pathways (CPK, CDA, RED and ACT), in various combinations, were constructed for the heterologous expression of specialized metabolites biosynthetic pathways of various types and origins. To determine consequences of these deletions on the metabolism of the deleted strains comparative lipidomic and metabolomic analyses of these strains and of the original strain were carried out. These studies unexpectedly revealed that the deletion of the peptidic clusters, RED and/or CDA, in a strain deleted for the ACT cluster, resulted into a great increase in the triacylglycerol (TAG) content, whereas the deletion of polyketide clusters, ACT and CPK had no impact on TAG content.
View Article and Find Full Text PDFMyrtaceae species are abundant in tropical Atlantic rainforests, but 41% of the 5500 species of this family are of extreme conservation concern. Eugenia astringens and E. uniflora are native Brazilian Myrtaceae species that occur in the same habitats and produce desiccation-sensitive (DS) seeds.
View Article and Find Full Text PDFFront Plant Sci
September 2023
Establishment of the seedlings is a crucial stage of the plant life cycle. The success of this process is essential for the growth of the mature plant. In Nature, when seeds germinate under the soil, seedlings follow a dark-specific program called skotomorphogenesis, which is characterized by small, non-green cotyledons, long hypocotyl, and an apical hook-protecting meristematic cells.
View Article and Find Full Text PDFRice is more vulnerable to drought than maize, wheat, and sorghum because its water requirements remain high throughout the rice life cycle. The effects of drought vary depending on the timing, intensity, and duration of the events, as well as on the rice genotype and developmental stage. It can affect all levels of organization, from genes to the cells, tissues, and/or organs.
View Article and Find Full Text PDFOrgan-on-chip technology is a promising in vitro approach recapitulating human physiology for the study of responses to drug exposure. Organ-on-chip cell cultures have paved new grounds for testing and understanding metabolic dose-responses when evaluating pharmaceutical and environmental toxicity. Here, we present a metabolomic investigation of a coculture of liver sinusoidal endothelial cells (LSECs, SK-HEP-1) with hepatocytes (HepG2/C3a) using advanced organ-on-chip technology.
View Article and Find Full Text PDFFront Cell Dev Biol
March 2023
ATP wasting is recognized as an efficient strategy to enhance metabolic activity and productivity of specific metabolites in several microorganisms However, such strategy has been rarely implemented in species whereas antibiotic production by members of this genus is known to be triggered in condition of phosphate limitation that is correlated with a low ATP content. In consequence, to assess the effects of ATP spilling on the primary and specialized metabolisms of , the gene encoding the small synthetic protein DX, that has high affinity for ATP and dephosphorylates ATP into ADP, was cloned in the integrative vector pOSV10 under the control of the strong E promoter. This construct and the empty vector were introduced into the species yielding A37 and A36, respectively.
View Article and Find Full Text PDFWhen covered by a layer of soil, seedling development follows a dark-specific program (skotomorphogenesis). In the dark, seedlings consist of small, non-green cotyledons, a long hypocotyl, and an apical hook to protect meristematic cells. We recently highlighted the role played by mitochondria in the high energy-consuming reprogramming of Arabidopsis skotomorphogenesis.
View Article and Find Full Text PDFManganese (Mn) is an essential metal for plant growth. The most important Mn-containing enzyme is the Mn4CaO5 cluster that catalyzes water oxidation in photosystem II (PSII). Mn deficiency primarily affects photosynthesis, whereas Mn excess is generally toxic.
View Article and Find Full Text PDFDiabetes mellitus (DM) is a complex disease with high prevalence of comorbidity and mortality. DM is predicted to reach more than 700 million people by 2045. In recent years, several advanced in vitro models and analytical tools were developed to investigate the pancreatic tissue response to pathological situations and identify therapeutic solutions.
View Article and Find Full Text PDFFunctional differentiation of pancreatic like tissue from human induced pluripotent stem cells is one of the emerging strategies to achieve an pancreas model. Here, we propose a protocol to cultivate hiPSC-derived β-like-cells coupling spheroids and microfluidic technologies to improve the pancreatic lineage maturation. The protocol led to the development of spheroids producing the C-peptide and containing cells positive to insulin and glucagon.
View Article and Find Full Text PDFIn Angiosperms, the development of the vascular system is controlled by a complex network of transcription factors. However, how nutrient availability in the vascular cells affects their development remains to be addressed. At the cellular level, cytosolic sugar availability is regulated mainly by sugar exchanges at the tonoplast through active and/or facilitated transport.
View Article and Find Full Text PDFSoybean ( L.) future response to elevated [CO] has been shown to differ when inoculated with strains isolated at ambient or elevated [CO]. Plants, inoculated with three strains isolated at different [CO], were grown in chambers at current and elevated [CO] (400 vs.
View Article and Find Full Text PDFLegume plants can form root organs called nodules where they house intracellular symbiotic rhizobium bacteria. Within nodule cells, rhizobia differentiate into bacteroids, which fix nitrogen for the benefit of the plant. Depending on the combination of host plants and rhizobial strains, the output of rhizobium-legume interactions varies from nonfixing associations to symbioses that are highly beneficial for the plant.
View Article and Find Full Text PDFSeveral studies have reported a correlation between pesticides exposure and metabolic disorders. Dichlorodiphenyltrichloroethane (DDT) and permethrin (PMT), two pesticides highly prevalent in the environment, have been associated to dysregulation of liver lipids and glucose metabolisms and non-alcoholic fatty liver disease (NAFLD). However, the effects of DDT/PMT mixtures and mechanisms mediating their action remain unclear.
View Article and Find Full Text PDFRegulation of seed germination by dormancy relies on a complex network of transcriptional and post-transcriptional modifications during seed imbibition that controls seed adaptive responses to environmental cues. High-throughput technologies have brought significant progress in the understanding of this phenomenon and have led to identify major regulators of seed germination, mostly by studying the behaviour of highly differentially expressed genes. However, the actual models of transcriptome analysis cannot catch additive effects of small variations of gene expression in individual signalling or metabolic pathways, which are also likely to control germination.
View Article and Find Full Text PDFMycoheterotrophic plants have lost photosynthesis and obtain carbon through mycorrhizal fungi colonizing their roots. They are likely to have evolved from mixotrophic ancestors, which rely on both photosynthesis and fungal carbon for their development. Whereas our understanding of the ecological and genomic changes associated with the evolutionary shift to mycoheterotrophy is deepening, little information is known about the specific metabolic and physiological features driving this evolution.
View Article and Find Full Text PDFThe flavoprotein l-aspartate oxidase (LASPO) is the first enzyme of the de novo biosynthetic pathway of NAD in plants. Although LASPO is considered pivotal to maintain NAD homeostasis, it has not been hitherto characterized in plants. Here, the cDNA encoding the LASPO from the model plant Arabidopsis thaliana (AtLASPO, At5g14760) has been cloned and expressed in Escherichia coli for subsequent enzyme characterization.
View Article and Find Full Text PDF