Purpose: To develop a method for abdominal simultaneous 3D water ( ) and ( ) mapping with isotropic resolution using a free-breathing Cartesian acquisition with spiral profile ordering (CASPR) at 3 T.
Methods: The proposed data acquisition combines a Look-Locker scheme with the modified BIR-4 adiabatic preparation pulse for simultaneous and mapping. CASPR is employed for efficient and flexible k-space sampling at isotropic resolution during free breathing.
IEEE Trans Med Imaging
August 2025
Anatomical atlases are widely used for population studies and analysis. Conditional atlases target a specific sub-population defined via certain conditions, such as demographics or pathologies, and allow for the investigation of fine-grained anatomical differences like morphological changes associated with ageing or disease. Existing approaches use either registration-based methods that are often unable to handle large anatomical variations or generative adversarial models, which are challenging to train since they can suffer from training instabilities.
View Article and Find Full Text PDFIEEE Trans Med Imaging
July 2025
Deep learning-based medical image segmentation techniques have shown promising results when evaluated based on conventional metrics such as the Dice score or Intersection-over-Union. However, these fully automatic methods often fail to meet clinically acceptable accuracy, especially when topological constraints should be observed, e.g.
View Article and Find Full Text PDFDeep vein thrombosis (DVT) carries high morbidity, mortality, and costs globally. Point of care ultrasound (POCUS) image acquisition by non-ultrasound-trained providers, supported by an AI-based guidance and remote image review system, is believed to improve the timeliness and cost-effectiveness of diagnosis. We examine a database of 381 patients with suspected DVT who underwent an AI-guided ultrasound scan by a non-ultrasound-trained nurse and an expert sonographer-performed standard compression ultrasound scan.
View Article and Find Full Text PDFObjective: To use artificial intelligence (AI) to automatically extract video clips of the fetal heart from a stream of ultrasound video, and to assess the performance of these when used for remote second review.
Methods: Using a dataset from a previous clinical trial of AI to assist in fetal ultrasound scanning, AI was used to automatically extract video clips of the fetal heart from ultrasound scans of 48 fetuses in which the diagnosis was known: 24 normal and 24 with congenital heart disease (CHD). These, and manually still saved images, were shown in a random order to expert clinicians, who were asked to detect cardiac abnormalities.
NPJ Digit Med
January 2025
The current approach to fetal anomaly screening is based on biometric measurements derived from individually selected ultrasound images. In this paper, we introduce a paradigm shift that attains human-level performance in biometric measurement by aggregating automatically extracted biometrics from every frame across an entire scan, with no need for operator intervention. We use a neural network to classify each frame of an ultrasound video recording.
View Article and Find Full Text PDFThe human brain's distinctive folding pattern has attracted the attention of researchers from different fields. Neuroscientists have provided insights into the role of four fundamental cell types crucial during embryonic development: radial glial cells, intermediate progenitor cells, outer radial glial cells, and neurons. Understanding the mechanisms by which these cell types influence the number of cortical neurons and the emerging cortical folding pattern necessitates accounting for the mechanical forces that drive the cortical folding process.
View Article and Find Full Text PDFPurpose: To develop and validate a data acquisition scheme combined with a motion-resolved reconstruction and dictionary-matching-based parameter estimation to enable free-breathing isotropic resolution self-navigated whole-liver simultaneous water-specific ( ) and ( ) mapping for the characterization of diffuse and oncological liver diseases.
Methods: The proposed data acquisition consists of a magnetization preparation pulse and a two-echo gradient echo readout with a radial stack-of-stars trajectory, repeated with different preparations to achieve different and contrasts in a fixed acquisition time of 6 min. Regularized reconstruction was performed using self-navigation to account for motion during the free-breathing acquisition, followed by water-fat separation.
IEEE Trans Med Imaging
November 2024
Registering pre-operative modalities, such as magnetic resonance imaging or computed tomography, to ultrasound images is crucial for guiding clinicians during surgeries and biopsies. Recently, deep-learning approaches have been proposed to increase the speed and accuracy of this registration problem. However, all of these approaches need expensive supervision from the ultrasound domain.
View Article and Find Full Text PDFParaDime is a framework for parametric dimensionality reduction (DR). In parametric DR, neural networks are trained to embed high-dimensional data items in a low-dimensional space while minimizing an objective function. ParaDime builds on the idea that the objective functions of several modern DR techniques result from transformed inter-item relationships.
View Article and Find Full Text PDFIncreasing evidence shows that flaws in machine learning (ML) algorithm validation are an underestimated global problem. In biomedical image analysis, chosen performance metrics often do not reflect the domain interest, and thus fail to adequately measure scientific progress and hinder translation of ML techniques into practice. To overcome this, we created Metrics Reloaded, a comprehensive framework guiding researchers in the problem-aware selection of metrics.
View Article and Find Full Text PDFNat Methods
February 2024
Validation metrics are key for tracking scientific progress and bridging the current chasm between artificial intelligence research and its translation into practice. However, increasing evidence shows that, particularly in image analysis, metrics are often chosen inadequately. Although taking into account the individual strengths, weaknesses and limitations of validation metrics is a critical prerequisite to making educated choices, the relevant knowledge is currently scattered and poorly accessible to individual researchers.
View Article and Find Full Text PDFAnn Vasc Surg
February 2024
Background: Compression ultrasonography of the leg is established for triaging proximal lower extremity deep vein thrombosis (DVT). AutoDVT, a machine-learning software, provides a tool for nonspecialists in acquiring compression sequences to be reviewed by an expert for patient triage. The purpose of this study was to test image acquisition and remote triaging in a clinical setting.
View Article and Find Full Text PDFBackground: Artificial intelligence (AI) has the potential to improve prenatal detection of congenital heart disease. We analysed the performance of the current national screening programme in detecting hypoplastic left heart syndrome (HLHS) to compare with our own AI model.
Methods: Current screening programme performance was calculated from local and national sources.
IEEE J Biomed Health Inform
October 2023
Over the last decade, video-enabled mobile devices have become ubiquitous, while advances in markerless pose estimation allow an individual's body position to be tracked accurately and efficiently across the frames of a video. Previous work by this and other groups has shown that pose-extracted kinematic features can be used to reliably measure motor impairment in Parkinson's disease (PD). This presents the prospect of developing an asynchronous and scalable, video-based assessment of motor dysfunction.
View Article and Find Full Text PDFMed Image Anal
October 2023
The diagnostic value of ultrasound images may be limited by the presence of artefacts, notably acoustic shadows, lack of contrast and localised signal dropout. Some of these artefacts are dependent on probe orientation and scan technique, with each image giving a distinct, partial view of the imaged anatomy. In this work, we propose a novel method to fuse the partially imaged fetal head anatomy, acquired from numerous views, into a single coherent 3D volume of the full anatomy.
View Article and Find Full Text PDFValidation metrics are key for the reliable tracking of scientific progress and for bridging the current chasm between artificial intelligence (AI) research and its translation into practice. However, increasing evidence shows that particularly in image analysis, metrics are often chosen inadequately in relation to the underlying research problem. This could be attributed to a lack of accessibility of metric-related knowledge: While taking into account the individual strengths, weaknesses, and limitations of validation metrics is a critical prerequisite to making educated choices, the relevant knowledge is currently scattered and poorly accessible to individual researchers.
View Article and Find Full Text PDFWe present PRETUS - a Plugin-based Real Time UltraSound software platform for live ultrasound image analysis and operator support. The software is lightweight; functionality is brought in via independent plug-ins that can be arranged in sequence. The software allows to capture the real-time stream of ultrasound images from virtually any ultrasound machine, applies computational methods and visualizes the results on-the-fly.
View Article and Find Full Text PDFAutomatic segmentation of the placenta in fetal ultrasound (US) is challenging due to the (i) high diversity of placenta appearance, (ii) the restricted quality in US resulting in highly variable reference annotations, and (iii) the limited field-of-view of US prohibiting whole placenta assessment at late gestation. In this work, we address these three challenges with a multi-task learning approach that combines the classification of placental location (e.g.
View Article and Find Full Text PDFIEEE Trans Med Imaging
February 2023
We present CortexODE, a deep learning framework for cortical surface reconstruction. CortexODE leverages neural ordinary differential equations (ODEs) to deform an input surface into a target shape by learning a diffeomorphic flow. The trajectories of the points on the surface are modeled as ODEs, where the derivatives of their coordinates are parameterized via a learnable Lipschitz-continuous deformation network.
View Article and Find Full Text PDFIEEE Trans Med Imaging
October 2022
Detecting Out-of-Distribution (OoD) data is one of the greatest challenges in safe and robust deployment of machine learning algorithms in medicine. When the algorithms encounter cases that deviate from the distribution of the training data, they often produce incorrect and over-confident predictions. OoD detection algorithms aim to catch erroneous predictions in advance by analysing the data distribution and detecting potential instances of failure.
View Article and Find Full Text PDFIEEE Trans Image Process
February 2022
Intelligent video summarization algorithms allow to quickly convey the most relevant information in videos through the identification of the most essential and explanatory content while removing redundant video frames. In this paper, we introduce the 3DST-UNet-RL framework for video summarization. A 3D spatio-temporal U-Net is used to efficiently encode spatio-temporal information of the input videos for downstream reinforcement learning (RL).
View Article and Find Full Text PDF