Publications by authors named "Benny D Freeman"

Liquid organic hydrogen carriers (LOHCs) are infrastructure-compatible media for hydrogen storage and transport under ambient conditions, addressing hydrogen's volatility, low density, and high reactivity. Separating liquid hydrogen-lean/hydrogen-rich hydrocarbons without resorting to energy-intensive phase changes is a key barrier to LOHC system implementation. Membrane operations that can separate hydrogen-lean/hydrogen-rich species can drive equilibria of dehydrogenation processes, enabling them to run at lower temperatures.

View Article and Find Full Text PDF

Poly(ethylene glycol) (PEG)-based materials, like PEG-diacrylate (PEGDA), are prized for their hydrophilic, inert properties, and leveraged in hydrogels and as membrane mimics. While network chemistry is often tuned for selective transport and antifouling, fundamental understanding of water dynamics at the network surface and impact on bulk transport is limited. We utilize Overhauser dynamic nuclear polarization (ODNP) to measure nanoscale water diffusivity near a tethered spin label at the water-polymer surface and compare to bulk water diffusivity from pulsed field gradient (PFG) NMR.

View Article and Find Full Text PDF

The concept of non-Crystalline Metal-Organic Frameworks (MOFs) is both theoretically exciting and rich in potential applications. Since their conceptual introduction, research in this field has experienced significant growth. This review provides a comprehensive overview of the design, synthesis, and applications of non-crystalline MOFs, highlighting the current state of the art.

View Article and Find Full Text PDF

Structures in nature combine hard and soft materials in precise three-dimensional (3D) arrangements, imbuing bulk properties and functionalities that remain elusive to mimic synthetically. However, the potential for biomimetic analogues to seamlessly interface hard materials with soft interfaces has driven the demand for innovative chemistries and manufacturing approaches. Here, we report a liquid resin for rapid, high-resolution digital light processing (DLP) 3D printing of multimaterial objects with an unprecedented combination of strength, elasticity and resistance to ageing.

View Article and Find Full Text PDF

Membrane-based separations are widely used for wastewater treatment due to their low cost and efficiency. However, membrane fouling, which is the unwanted deposition or attachment of contaminants on membrane surfaces and/or within membrane pores, remains a major challenge as it increases the mass transfer resistance and reduces membrane productivity. Membrane fouling is typically probed by macroscopic performance metrics, such as flux decline, and ex situ characterization.

View Article and Find Full Text PDF

Ion transport properties in polymer electrolytes have been widely studied under rigorously dry and highly water-swollen conditions. However, the transition between these extremes, i.e.

View Article and Find Full Text PDF

Achieving high water vapor transport while maintaining selective barrier properties in a single material is a crucial property desired in various fields. Breathable protective fabrics is one such area. This study specifically investigates the water vapor transport characteristics and barrier performance of carbon molecular sieve (CMS) membranes for potential applications in breathable protective fabrics.

View Article and Find Full Text PDF

Using computer simulations and experiments, we demonstrate that polymer backbone rigidity can be used to tune selectivities and permeabilities of lithium over magnesium in hydrated polymer membranes. Coarse-grained molecular dynamics (CGMD) simulations suggest a strong dependence of cation diffusion coefficients on polymer segmental dynamics and cation-solvent coordination strength, with water content and backbone dynamics having distinct effects on transport properties. Experimentally, we synthesized 2-hydroxyethyl acrylate--ethyl acrylate (HEA--EA) and 2-hydroxyethyl methacrylate--methyl methacrylate (HEMA--MMA) membranes.

View Article and Find Full Text PDF

Metal-organic framework (MOF) membranes with high ion selectivity are highly desirable for direct lithium-ion (Li) separation from industrial brines. However, very few MOF membranes can efficiently separate Li from brines of high Mg/Li concentration ratios and keep stable in ultrahigh Mg-concentrated brines. This work reports a type of MOF-channel membranes (MOFCMs) by growing UiO-66-(SH) into the nanochannels of polymer substrates to improve the efficiency of MOF membranes for challenging Li extraction.

View Article and Find Full Text PDF

With over 6 million tons produced annually, thermoplastic elastomers (TPEs) have become ubiquitous in modern society, due to their unique combination of elasticity, toughness, and reprocessability. Nevertheless, industrial TPEs display a tradeoff between softness and strength, along with low upper service temperatures, typically ≤100 °C. This limits their utility, such as in bio-interfacial applications where supersoft deformation is required in tandem with strength, in addition to applications that require thermal stability (e.

View Article and Find Full Text PDF

Novel vapor-permeable materials are sought after for applications in protective wear, energy generation, and water treatment. Current impermeable protective materials effectively block harmful agents but trap heat due to poor water vapor transfer. Here we present a new class of materials, vapor permeable dehydrated nanoporous biomimetic membranes (DBMs), based on channel proteins.

View Article and Find Full Text PDF

The influence of the water content on ion and water transport mechanisms in polymer membranes under low to moderate hydration conditions remains poorly understood. In this study, we combine ion and water diffusivity (PFG-NMR) measurements with atomistic molecular dynamics simulations to better understand transport processes in hydrated salt-doped poly(ethylene glycol). Above the water percolation threshold, the experimental and simulated diffusivities are in good agreement with the free volume transport models.

View Article and Find Full Text PDF

Minimal understanding of the formation mechanism and structure of polydopamine (pDA) and its natural analogue, eumelanin, impedes the practical application of these versatile polymers and limits our knowledge of the origin of melanoma. The lack of conclusive structural evidence stems from the insolubility of these materials, which has spawned significantly diverse suggestions of pDA's structure in the literature. We discovered that pDA is soluble in certain ionic liquids.

View Article and Find Full Text PDF

Ion exchange membranes (IEMs) are frequently used in water treatment and electrochemical applications, with their ion separation properties largely governed by equilibrium ion partitioning between a membrane and contiguous solution. Despite an expansive literature on IEMs, the influence of electrolyte association (i.e.

View Article and Find Full Text PDF
Article Synopsis
  • Researchers have been trying to create artificial channels that can selectively transport specific ions, similar to biological channels, but achieving high selectivity, especially for sodium (Na) over potassium (K), has been difficult.
  • This study introduces an artificial sodium channel made from a type of metal-organic framework that includes specialized crown ether molecules, resulting in exceptional selectivity for Na over K and also for Na over lithium (Li).
  • The mechanism behind this selectivity involves several factors, such as size differences, charge preferences, and interactions with the channel material, suggesting a promising approach for future ion-selective technologies.
View Article and Find Full Text PDF

Controllable fabrication of angstrom-size channels has been long desired to mimic biological ion channels for the fundamental study of ion transport. Here we report a strategy for fabricating angstrom-scale ion channels with one-dimensional (1D) to three-dimensional (3D) pore structures by the growth of metal-organic frameworks (MOFs) into nanochannels. The 1D MIL-53 channels of flexible pore sizes around 5.

View Article and Find Full Text PDF

Access to multimaterial polymers with spatially localized properties and robust interfaces is anticipated to enable new capabilities in soft robotics, such as smooth actuation for advanced medical and manufacturing technologies. Here, orthogonal initiation is used to create interpenetrating polymer networks (IPNs) with spatial control over morphology and mechanical properties. Base catalyzes the formation of a stiff and strong polyurethane, while blue LEDs initiate the formation of a soft and elastic polyacrylate.

View Article and Find Full Text PDF

Membrane fouling remains a key challenge for membrane separations. Hydrophilic membrane surface modification can mitigate irreversible foulant deposition, thereby improving fouling resistance. We report new hydrophilic membrane coatings based on 1,4-benzoquinone and various commercially available polyetheramines.

View Article and Find Full Text PDF

The influence of dynamical ion-ion correlations and ion pairing on salt transport in ion exchange membranes remain poorly understood. In this study, we use the framework of Onsager transport coefficients within atomistic molecular dynamics simulations to study the impact of ion-ion correlated motion on salt transport in hydrated polystyrene sulfonate membranes and compare with the results from aqueous salt solutions. At sufficiently high salt concentrations, cation-anion dynamical correlations exert a significant influence on both salt diffusivities and conductivities.

View Article and Find Full Text PDF

An organized combination of stiff and elastic domains within a single material can synergistically tailor bulk mechanical properties. However, synthetic methods to achieve such sophisticated architectures remain elusive. We report a rapid, facile, and environmentally benign method to pattern strong and stiff semicrystalline phases within soft and elastic matrices using stereo-controlled ring-opening metathesis polymerization of an industrial monomer, -cyclooctene.

View Article and Find Full Text PDF

Selective transport of solutes across a membrane is critical for many biological, water treatment and energy conversion and storage systems. When a charged membrane is equilibrated with an electrolyte, an unequal distribution of ions arises between phases, generating the so-called Donnan electrical potential at the solution/membrane interface. The Donnan potential results in the partial exclusion of co-ion, providing the basis of permselectivity.

View Article and Find Full Text PDF

A set of thermally rearranged mixed matrix membranes (TR-MMMs) was manufactured and tested for gas separation. These membranes were obtained through the thermal treatment of a precursor MMM with a microporous polymer network and an o-hydroxypolyamide,(HPA) created through a reaction of 2,2-bis(3-amino-4-hydroxyphenyl)-hexafluoropropane (APAF) and 5'-terbutil--terfenilo-3,3″-dicarboxylic acid dichloride (tBTmCl). This HPA was blended with different percentages of a porous polymer network (PPN) filler, which produced gas separation MMMs with enhanced gas permeability but with decreased selectivity.

View Article and Find Full Text PDF

Direct lithium extraction via membrane separations has been fundamentally limited by lack of monovalent ion selectivity exhibited by conventional polymeric membranes, particularly between sodium and lithium ions. Recently, a 12-Crown-4-functionalized polynorbornene membrane was shown to have the largest lithium/sodium permeability selectivity observed in a fully aqueous system to date. Using atomistic molecular dynamics simulations, we reveal that this selectivity is due to strong interactions between sodium ions and 12-Crown-4 moieties, which reduce sodium ion diffusivity while leaving lithium ion mobility relatively unaffected.

View Article and Find Full Text PDF

Mixed-matrix membranes (MMMs) consisting of an -hydroxy polyamide (HPA) matrix, and variable loads of a porous polymer network (PPN) were thermally treated to induce the transformation of HPA to polybenzoxazole (β-TR-PBO). Two different HPAs were synthesized to be used as a matrix, 6FCl-APAF and tBTpCl-APAF, while the PPN used as a filler was prepared by reacting triptycene and trifluoroacetophenone. The permeability of He, H, N, O, CH and CO gases through these MMMs are analyzed as a function of the fraction of free volume (FFV) of the membrane and the kinetic diameter of the gas, allowing for the evaluation of the free volume.

View Article and Find Full Text PDF

Mixed matrix membranes (MMMs) consisting of a blend of a hydroxypolyamide (HPA) matrix and variable loads of a porous polymer network (PPN) were thermally treated to induce the transformation of HPA to polybenzoxazole (β-TR-PBO). Here, the HPA matrix was a hydroxypolyamide having two hexafluoropropyilidene moieties, 6FCl-APAF, while the PPN was prepared by reacting triptycene (TRP) and trifluoroacetophenone (TFAP) in a superacid solution. The most probable size of the PPN particles was 75 nm with quite large distributions.

View Article and Find Full Text PDF