Publications by authors named "Ashokkumar Kumaravel"

In recent years, bacterial cellulose (BC), a crystalline and nanoscale fibrillar polymer, has garnered significant interest due to its superior physical, chemical, and mechanical properties compared to plant cellulose. Inherent features of BC, which include high biodegradability, mechanical strength, and biocompatibility, make it a suitable material for use in a wide variety of applications, particularly in the domains of biomedicine and environmental science. However, realizing its full potential requires targeted chemical or physical modifications.

View Article and Find Full Text PDF

Cell surface display engineering facilitated the development of a cobalt-binding hybrid . OmpC served as the molecular anchor for showcasing the cobalt-binding peptides (CBPs), creating the structural model of the hybrid OmpC-CBPs (OmpC-CP, OmpC-CF). Subsequently, the recombinant peptide's cobalt adsorption and retrieval effectiveness were evaluated at various concentrations.

View Article and Find Full Text PDF

The novel recombinant Escherichia coli strain was construct through cell surface display for the treatment of cobalt contaminated wastewater and dye contaminated wastewater. First, structural analysis of known cobalt binding peptide was conducted and core binding sites were figured out which showing better cobalt binding ability. The cobalt peptides were attached to OmpC to construct cobalt adsorbing recombinant Escherichia coli.

View Article and Find Full Text PDF

A novel strain, created by engineering its cell surface with a cobalt-binding peptide CP1, was investigated in this study. The recombinant strain, pBAD30-YiaT-CP1, was structurally modeled to determine its cobalt-binding affinity. Furthermore, the effectiveness and specificity of pBAD30-CP1 in adsorbing and extracting cobalt from artificial wastewater polluted with the metal were investigated.

View Article and Find Full Text PDF

We investigated the effect of cell-surface display of glutamate decarboxylase (GadB) on gamma-aminobutyric acid (GABA) production in recombinant Escherichia coli. We integrated GadB from the hyperthermophilic, anaerobic archaeon Pyrococcus horikoshii to the C-terminus of the E. coli outer membrane protein C (OmpC).

View Article and Find Full Text PDF