Publications by authors named "Asfaw Degu"

Understanding the impact of drought stress on Arabica coffee physiology and metabolism is essential in the pursuit of developing drought-resistant varieties. In this study, we explored the physiological and metabolite changes in coffee genotypes exhibiting varying degrees of tolerance to drought-namely, the relatively tolerant 74110 and 74112, and the sensitive 754 and J-19 genotypes-under well-watered conditions and during terminal drought stress periods at two time points (0 and 60 days following the onset of stress). The metabolite profiling uncovered significant associations between the growth and the physiological characteristics of coffee genotypes with distinct drought tolerance behaviors.

View Article and Find Full Text PDF

There is a dearth of information on the comparative studies of the physicochemical, proximate, and antioxidant properties as well as quality standards of stingless bee honey (SBH) in Ethiopia. Hence, this study was designed to assess and compare the physicochemical, proximate, and antioxidant properties of SBH, specifically sourced from , and produced under both wild and modern apiary conditions at two distinct geographical locations. A total of forty-six honey samples were meticulously collected from domesticated stingless bee colonies and naturally occurring wild nests at Wolmera and Cheliya districts.

View Article and Find Full Text PDF

and are known to be multipurpose trees with various uses and values. Therefore, the aim of this study was to investigate the seed germination behaviours of and under different presowing treatments. Hence, seeds were collected from the Central and Southern Ethiopian Rift Valley regions.

View Article and Find Full Text PDF

Background: Grapevine is an economically important crop for which yield and berry quality is strongly affected by climate change. Large variations in drought tolerance exist across Vitis species. Some of these species are used as rootstock to enhance abiotic and biotic stress tolerance.

View Article and Find Full Text PDF

Background: Grape leaves provide the biochemical substrates for berry development. Thus, understanding the regulation of grapevine leaf metabolism can aid in discerning processes fundamental to fruit development and berry quality. Here, the temporal alterations in leaf metabolism in Merlot grapevine grown under sufficient irrigation and water deficit were monitored from veraison until harvest.

View Article and Find Full Text PDF

Grapes are one of the major fruit crops and they are cultivated in many dry environments. This study comprehensively characterizes the metabolic response of grape berries exposed to water deficit at different developmental stages. Increases of proline, branched-chain amino acids, phenylpropanoids, anthocyanins, and free volatile organic compounds have been previously observed in grape berries exposed to water deficit.

View Article and Find Full Text PDF

Postveraison water deficit is a common strategy implemented to improve fruit composition in many wine-growing regions. However, contrasting results are often reported on fruit size and composition, a challenge for generalizing the positive impact of this technique. Our research investigated the effect of water deficit (WD) imposed at veraison on Merlot grapevines, during two experimental seasons (2014-2015).

View Article and Find Full Text PDF

Drought-acclimated vines maintained higher gas exchange compared to irrigated controls under water deficit; this effect is associated with modified leaf turgor but not with improved petiole vulnerability to cavitation. A key feature for the prosperity of plants under changing environments is the plasticity of their hydraulic system. In the present research we studied the hydraulic regulation in grapevines (Vitis vinifera L.

View Article and Find Full Text PDF

Grape-berries are exposed to a plethora of abiotic and biotic stimuli during their development. The developmental and temporal regulation of grape berry polyphenol metabolism in response to various cues was investigated using LC-QTOF-MS based metabolite profiling. High light (2500μmolm(-2)s(-1)), high temperature (40°C), jasmonic acid (200μM), menadione (120μM) and abscisic acid (3.

View Article and Find Full Text PDF

Background: Grape cultivars and wines are distinguishable by their color, flavor and aroma profiles. Omic analyses (transcripts, proteins and metabolites) are powerful tools for assessing biochemical differences in biological systems.

Results: Berry skins of red- (Cabernet Sauvignon, Merlot, Pinot Noir) and white-skinned (Chardonnay, Semillon) wine grapes were harvested near optimum maturity (°Brix-to-titratable acidity ratio) from the same experimental vineyard.

View Article and Find Full Text PDF

Shiraz and Cabernet Sauvignon (Cs) grapevines were grown at near optimal temperatures (25 or 35 °C). Gas exchange, fluorescence, metabolic profiling and correlation based network analysis were used to characterize leaf physiology. When grown at 25 °C, the growth rate and photosynthesis of both cultivars were similar.

View Article and Find Full Text PDF

As climate changes, there is a need to understand the expected effects on viticulture. In nature, stresses exist in a combined manner, hampering the elucidation of the effect of individual cues on grape berry metabolism. Cell suspension culture originated from pea-size Gamy Red grape berry was used to harness metabolic response to high light (HL; 2500 μmol m(-2)s(-1)), high temperature (HT; 40°C) and their combination in comparison to 25°C and 100 μmol m(-2)s(-1) under controlled condition.

View Article and Find Full Text PDF

Grapevine cultivars possess large variability in their response to water availability, and are therefore considered as a good model to study plant hydraulic adjustments. The current research compared the petiole anatomy of two grapevine (Vitis vinifera L.) cultivars, Shiraz and Cabernet Sauvignon, in respect to hydraulic properties.

View Article and Find Full Text PDF

Background: Seed of Shismus arabicus, a desert annual, display a seasonal tolerance to dehydration. The occurrence of a metabolic seasonal rhythm and its relation with the fluctuations in seed dehydration tolerance was investigated.

Results: Dry seeds metabolism was the least affected by the season, while the metabolism of germinated and dehydrated seeds exhibit distinct seasonal patterns.

View Article and Find Full Text PDF

Deficit irrigation techniques are widely used in commercial vineyards. Nevertheless, varieties respond differently to water availability, prompting the need to elucidate the physiological and molecular mechanisms involved in the interactions between genotypes and their environment. In the present study, the variability in berry metabolism under deficit irrigation was investigated in the field on Shiraz and Cabernet Sauvignon (CS), known for their hydraulic variability.

View Article and Find Full Text PDF

The chemical composition of grape berries is varietal dependent and influenced by the environment and viticulture practices. In Muscat grapes, phenolic compounds play a significant role in the organoleptic property of the wine. In the present study, we investigated the chemical diversity of berries in a Muscat collection.

View Article and Find Full Text PDF

Background: Grapevine berries undergo complex biochemical changes during fruit maturation, many of which are dependent upon the variety and its environment. In order to elucidate the varietal dependent developmental regulation of primary and specialized metabolism, berry skins of Cabernet Sauvignon and Shiraz were subjected to gas chromatography-mass spectrometry (GC-MS) and liquid chromatography-mass spectrometry (LC-MS) based metabolite profiling from pre-veraison to harvest. The generated dataset was augmented with transcript profiling using RNAseq.

View Article and Find Full Text PDF

Background: Grapevine metabolism in response to water deficit was studied in two cultivars, Shiraz and Cabernet Sauvignon, which were shown to have different hydraulic behaviors (Hochberg et al. Physiol. Plant.

View Article and Find Full Text PDF

Drought stress is known to limit photosynthesis rates and to inflict photo-oxidative damage in grapevines. Grapevines, which are considered drought-tolerant plants, are characterized by diverse hydraulic and photosynthetic behaviors, depending on the cultivar. This research compared the photosynthesis and the photorespiration of Cabernet Sauvignon (Cs) (isohydric) and Shiraz (anisohydric) in an attempt to acquire a wider perspective on the iso/anisohydric phenomenon and its implications.

View Article and Find Full Text PDF

Citrate, a major determinant of citrus fruit quality, accumulates early in fruit development and declines towards maturation. The isomerization of citrate to isocitrate, catalyzed by aconitase is a key step in acid metabolism. Inhibition of mitochondrial aconitase activity early in fruit development contributes to acid accumulation, whereas increased cytosolic activity of aconitase causes citrate decline.

View Article and Find Full Text PDF