Front Cell Infect Microbiol
March 2024
Question: The large earth bumble bee () maintains a social core gut-microbiota, similar as known from the honey bee, which plays an important role for host health and resistance. Experiments under laboratory conditions with commercial hives are limited to vertically transmitted microbes and neglect influences of environmental factors or external acquisition of microbes. Various environmental and landscape-level factors may have an impact on the gut-microbiota of pollinating insects, with consequences for pollinator health and fitness in agroecosystems.
View Article and Find Full Text PDFFront Microbiol
February 2022
The gut microbiota of animals displays a high degree of plasticity with respect to environmental or dietary adaptations and is shaped by factors like social interactions, diet diversity or the local environment. But the contribution of these drivers varies across host taxa and our ability to explain microbiome variability within wild populations remains limited. Terrestrial animals have divergent mobility ranges and can either crawl, walk or fly, from a couple of centimeters toward thousands of kilometers.
View Article and Find Full Text PDFAppl Environ Microbiol
June 2020
An insect's phenotype can be influenced by the experiences of the parental generation. However, the effects of the parental symbiotic microbiome and host plant use on the offspring are unclear. We addressed this gap of knowledge by studying , a multivoltine butterfly species feeding on different brassicaceous plants across generations.
View Article and Find Full Text PDFPlants can enhance their defence against herbivorous insects by responding to insect egg depositions preceding larval feeding. The similarity of plant responses to insect eggs with those to phytopathogens gave rise to the hypothesis that egg-associated microbes might act as elicitors. We tested this hypothesis by investigating first if elimination of microbes in the butterfly Pieris brassicae changes the responses of Brassica nigra and Arabidopsis thaliana to eggs and larvae of this insect species.
View Article and Find Full Text PDFPlant-microbe associations are thought to be beneficial for plant growth and resistance against biotic or abiotic stresses, but for natural ecosystems, the ecological analysis of microbiome function remains in its infancy. We used transformed wild tobacco plants () which constitutively express an antimicrobial peptide (Mc-AMP1) of the common ice plant, to establish an ecological tool for plant-microbe studies in the field. Transgenic plants showed in planta activity against plant-beneficial bacteria and were phenotyped within the plants´ natural habitat regarding growth, fitness and the resistance against herbivores.
View Article and Find Full Text PDFPlant Cell Rep
January 2018
In the recent years, there has been considerable interest to investigate the adaptive transgenerational plasticity of plants and how a "stress memory" can be transmitted to the following generation. Although, increasing evidence suggests that transgenerational adaptive responses have widespread ecological relevance, the underlying epigenetic processes have rarely been elucidated. On the other hand, model plant species have been deeply investigated in their genome-wide methylation landscape without connecting this to the ecological reality of the plant.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
August 2017
Optimal defense (OD) theory predicts that within a plant, tissues are defended in proportion to their fitness value and risk of predation. The fitness value of leaves varies greatly and leaves are protected by jasmonate (JA)-inducible defenses. Flowers are vehicles of Darwinian fitness in flowering plants and are attacked by herbivores and pathogens, but how they are defended is rarely investigated.
View Article and Find Full Text PDFPlants recruit microbial communities from the soil in which they germinate. Our understanding of the recruitment process and the factors affecting it is still limited for most microbial taxa. We analysed several factors potentially affecting root microbiome structure - the importance of geographic location of natural populations, the microbiome of native seeds as putative source of colonization and the effect of a plant's response to UVB exposure on root colonization of highly abundant species.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
September 2015
Plants maintain microbial associations whose functions remain largely unknown. For the past 15 y, we have planted the annual postfire tobacco Nicotiana attenuata into an experimental field plot in the plant's native habitat, and for the last 8 y the number of plants dying from a sudden wilt disease has increased, leading to crop failure. Inadvertently we had recapitulated the common agricultural dilemma of pathogen buildup associated with continuous cropping for this native plant.
View Article and Find Full Text PDFBackground: Overexpressing novel antimicrobial peptides (AMPs) in plants is a promising approach for crop disease resistance engineering. However, the in planta stability and subcellular localization of each AMP should be validated for the respective plant species, which can be challenging due to the small sizes and extreme pI ranges of AMPs which limits the utility of standard proteomic gel-based methods. Despite recent advances in quantitative shotgun proteomics, its potential for AMP analysis has not been utilized and high throughput methods are still lacking.
View Article and Find Full Text PDFWe recently characterized a highly dynamic fungal disease outbreak in native populations of Nicotiana attenuata in the southwestern United States. Here, we explore how phytohormone signalling contributes to the observed disease dynamics. Single inoculation with three native Fusarium and Alternaria fungal pathogens, isolated from diseased plants growing in native populations, resulted in disease symptoms characteristic for each pathogen species.
View Article and Find Full Text PDFThe wild tobacco species Nicotiana attenuata has been intensively used as a model plant to study its interaction with insect herbivores and pollinators in nature, however very little is known about its native pathogen community. We describe a fungal disease outbreak in a native N. attenuata population comprising 873 plants growing in an area of about 1500 m2.
View Article and Find Full Text PDFBackground: Genetically modified plants are widely used in agriculture and increasingly in ecological research to enable the selective manipulation of plant traits in the field. Despite their broad usage, many aspects of unwanted transgene silencing throughout plant development are still poorly understood. A transgene can be epigenetically silenced by a process called RNA directed DNA methylation (RdDM), which can be seen as a heritable loss of gene expression.
View Article and Find Full Text PDFMol Ecol Resour
September 2011
Plants stably transformed to manipulate the expression of genes mediating ecological performance have profoundly altered research in plant ecology. Agrobacterium-mediated transformation remains the most effective method of creating plants harbouring a limited number of transgene integrations of low complexity. For ecological/physiological research, the following requirements must be met: (i) the regenerated plants should have the same ploidy level as the corresponding wild-type plant and (ii) contain a single transgene copy in a homozygous state; (iii) the T-DNA must be completely inserted without vector backbone sequence and all its elements functional; and (iv) the integration should not change the phenotype of the plant by interrupting chromosomal genes or by mutations occurring during the regeneration procedure.
View Article and Find Full Text PDF