Publications by authors named "Anna Syreeni"

Background: DNA methylation differences are associated with kidney function and diabetic kidney disease (DKD), but prospective studies are scarce. Therefore, we aimed to study DNA methylation in a prospective setting in the Finnish Diabetic Nephropathy Study type 1 diabetes (T1D) cohort.

Methods: We analysed baseline blood sample-derived DNA methylation (Illumina's EPIC array) of 403 individuals with normal albumin excretion rate (early progression group) and 373 individuals with severe albuminuria (late progression group) and followed-up their DKD progression defined as decrease in eGFR to <60 mL/min/1.

View Article and Find Full Text PDF

Aims/hypothesis: Diabetic kidney disease (DKD) is a severe diabetic complication that affects one third of individuals with type 1 diabetes. Although several genes and common variants have been shown to be associated with DKD, much of the predicted inheritance remains unexplained. Here, we performed next-generation sequencing to assess whether low-frequency variants, extending to a minor allele frequency (MAF) ≤10% (single or aggregated) contribute to the missing heritability in DKD.

View Article and Find Full Text PDF

Individuals with type 1 diabetes (T1D) carry a markedly increased risk of stroke, with distinct clinical and neuroimaging characteristics as compared to those without diabetes. Using whole-exome or whole-genome sequencing of 1,051 individuals with T1D, we aimed to find rare and low-frequency genomic variants associated with stroke in T1D. We analysed the genome comprehensively with single-variant analyses, gene aggregate analyses, and aggregate analyses on genomic windows, enhancers and promoters.

View Article and Find Full Text PDF

Variation in DNA methylation (DNAmet) in white blood cells and other cells/tissues has been implicated in the etiology of progressive diabetic kidney disease (DKD). However, the specific mechanisms linking DNAmet variation in blood cells with risk of kidney failure (KF) and utility of measuring blood cell DNAmet in personalized medicine are not clear. We measured blood cell DNAmet in 277 individuals with type 1 diabetes and DKD using Illumina EPIC arrays; 51% of the cohort developed KF during 7 to 20 years of follow-up.

View Article and Find Full Text PDF

Background: Contrary to the presumption that type 1 diabetes leads to an absolute insulin deficiency, many individuals with type 1 diabetes have circulating C-peptide years after the diagnosis. We studied factors affecting random serum C-peptide concentration in individuals with type 1 diabetes and the association with diabetic complications.

Methods: Our longitudinal analysis included individuals newly diagnosed with type 1 diabetes from Helsinki University Hospital (Helsinki, Finland) with repeated random serum C-peptide and concomitant glucose measurements from within 3 months of diagnosis and at least once later.

View Article and Find Full Text PDF

Diabetic nephropathy (DN) is a polygenic disorder with few risk variants showing robust replication in large-scale genome-wide association studies. To understand the role of DNA methylation, it is important to have the prevailing genomic view to distinguish key sequence elements that influence gene expression. This is particularly challenging for DN because genome-wide methylation patterns are poorly defined.

View Article and Find Full Text PDF
Article Synopsis
  • * A study involving 1,304 individuals from the UK-Republic of Ireland and Finland found 32 specific DNA methylation sites (CpGs) associated with diabetic kidney disease in Type 1 diabetes.
  • * Of these, 21 CpGs can predict the onset of kidney failure, potentially helping identify individuals at higher risk for diabetic kidney disease.
View Article and Find Full Text PDF

The early prediction of health outcomes for people with diabetes mellitus is desirable, as are adjunct therapies to reduce the related chronic complications and risk of premature death. The length of telomeres, protective caps on chromosome ends, is influenced by genetic and acquired factors, and shorter telomeres have been associated with and predictive of adverse cardiometabolic outcomes. Many studies have shown associations between telomere length in white blood cells (WBC) and diabetes per se and its chronic complications, and some studies show that telomeres do not always progressively shorten in people with diabetes.

View Article and Find Full Text PDF

Background: Dyslipidemia is a major risk factor for cardiovascular disease, and diabetes impacts the lipid metabolism through multiple pathways. In addition to the standard lipid measurements, apolipoprotein concentrations provide added awareness of the burden of circulating lipoproteins. While common genetic variants modestly affect the serum lipid concentrations, rare genetic mutations can cause monogenic forms of hypercholesterolemia and other genetic disorders of lipid metabolism.

View Article and Find Full Text PDF

The exon copy number variant in the haptoglobin gene is associated with cardiovascular and kidney disease. For stroke, previous research is inconclusive. We aimed to study the relationship between the haptoglobin Hp1/2 genotype and stroke in individuals with type 1 diabetes from the Finnish Diabetic Nephropathy Study.

View Article and Find Full Text PDF

Aims: We aimed to determine how white blood cell (WBC) telomeres and telomere length change over time are associated with health status in type 1 diabetes.

Methods: Relative telomere length (rTL) was measured in WBC DNA from two time-points (median 6.8 years apart) in 618 individuals from the Finnish Diabetic Nephropathy Study by quantitative PCR, with interassay CV ≤ 4%.

View Article and Find Full Text PDF

Aims: Diabetes is a known risk factor for coronary artery disease (CAD). There is accumulating evidence that CAD pathogenesis differs for individuals with type 1 diabetes (T1D). However, the genetic background has not been extensively studied.

View Article and Find Full Text PDF

Diabetic retinopathy is a common diabetes complication that threatens the eyesight and may eventually lead to acquired visual impairment or blindness. While a substantial heritability has been reported for proliferative diabetic retinopathy (PDR), only a few genetic risk factors have been identified. Using genome-wide sib pair linkage analysis including 361 individuals with type 1 diabetes, we found suggestive evidence of linkage with PDR at chromosome 10p12 overlapping the gene (logarithm of odds = 2.

View Article and Find Full Text PDF

Glycated hemoglobin (HbA) is an important measure of glycemia in diabetes. HbA is influenced by environmental and genetic factors both in people with and in people without diabetes. We performed a genome-wide association study (GWAS) for HbA in a Finnish type 1 diabetes (T1D) cohort, FinnDiane.

View Article and Find Full Text PDF

Hypoxemia is common in diabetes, and reflex responses to hypoxia are blunted. These abnormalities could lead to cardiovascular/renal complications. Interval hypoxia (IH) (5-6 short periods of hypoxia each day over 1-3 weeks) was successfully used to improve the adaptation to hypoxia in patients with chronic obstructive pulmonary disease.

View Article and Find Full Text PDF

Diabetic kidney disease, or diabetic nephropathy (DN), is a major complication of diabetes and the leading cause of end-stage renal disease (ESRD) that requires dialysis treatment or kidney transplantation. In addition to the decrease in the quality of life, DN accounts for a large proportion of the excess mortality associated with type 1 diabetes (T1D). Whereas the degree of glycemia plays a pivotal role in DN, a subset of individuals with poorly controlled T1D do not develop DN.

View Article and Find Full Text PDF

We formed the GEnetics of Nephropathy-an International Effort (GENIE) consortium to examine previously reported genetic associations with diabetic nephropathy (DN) in type 1 diabetes. GENIE consists of 6,366 similarly ascertained participants of European ancestry with type 1 diabetes, with and without DN, from the All Ireland-Warren 3-Genetics of Kidneys in Diabetes U.K.

View Article and Find Full Text PDF

Objective: Hyperglycemia plays a pivotal role in the development and progression of vascular complications, which are the major sources of morbidity and mortality in diabetes. Furthermore, these vascular complications often persist and progress despite improved glucose control, possibly as a result of prior episodes of hyperglycemia. Epigenetic modifications mediated by histone methyltransferases are associated with gene-activating events that promote enhanced expression of key proinflammatory molecules implicated in vascular injury.

View Article and Find Full Text PDF