Biological thiols such as glutathione (GSH), cysteine (Cys), and homocysteine (Hcy) are important molecules that help to keep the redox balance inside cells. Their subcellular distribution varies across organelles such as mitochondria and lysosomes, and dysregulated thiol levels are implicated in various pathological conditions. Therefore, the development of effective biothiol sensors for subcellular imaging is of significant interest.
View Article and Find Full Text PDFTwo tetrasubstituted imidazoles, denoted as TSIm-1 and TSIm-2, with flexible and rigid cores, respectively, displayed remarkable photophysical properties as well as aggregation-induced emission. TSIm-1 exhibited trace water detection in THF with an LOD of 0.03 wt%.
View Article and Find Full Text PDFReactive oxygen species (ROS) play crucial roles in both cell signaling and defense mechanisms. Hypochlorous acid (HOCl), a strong oxidant, aids the immune response by damaging pathogens. In this study, we developed two pyridinium-based fluorophores PSSM and PSSE for selective hypochlorite detection.
View Article and Find Full Text PDFSince death is an inevitable phenomenon, exploring cell deaths holds importance. During this process, the cellular microenvironment within cells such as pH, polarity, viscosity etc alter. One such microenvironment, viscosity elevates during different cell deaths.
View Article and Find Full Text PDFAn easy-to-prepare pyrene-based Schiff base PNZ was synthesized by condensing equimolar amount of 1-pyrenebutyric hydrazide with 2-hydroxy-naphthaldehyde, and employed as a fluorescent chemosensor for in-situ cascade detection of aluminium (Al) and fluoride (F) ions. In DMSO:HO (1 : 1, v/v), the weakly emissive PNZ showed a significant fluorescence enhancement at 455 nm selectively upon the addition of Al due to the complexation-induced formation of a pyrene excimer. Schiff base PNZ and Al formed a complex in 2 : 1 binding ratio with the estimated binding constants of K=9826.
View Article and Find Full Text PDFBiochim Biophys Acta Mol Basis Dis
October 2024
The glucose-6-phosphate dehydrogenase (G6PD) deficiency is X-linked and is the most common enzymatic deficiency disorder globally. It is a crucial enzyme for the pentose phosphate pathway and produces NADPH, which plays a vital role in regulating the oxidative stress of many cell types. The deficiency of G6PD primarily causes hemolytic anemia under oxidative stress triggered by food, drugs, or infection.
View Article and Find Full Text PDFIn the pathogenesis of microglia, brain immune cells promote nitrergic stress by overproducing nitric oxide (NO), leading to neuroinflammation. Furthermore, NO has been linked to COVID-19 progression, which has caused significant morbidity and mortality. SARS-CoV-2 infection activates inflammation by releasing excess NO and causing cell death in human microglial clone 3 (HMC3).
View Article and Find Full Text PDFFerroptosis is a recently identified form of regulated cell death characterized by iron accumulation and lipid peroxidation. Numerous functions for ferroptosis have been identified in physiological as well as pathological processes, most notably in the treatment of cancer. The intricate balance of redox homeostasis is profoundly altered during ferroptosis, leading to alteration in cellular microenvironment.
View Article and Find Full Text PDFChem Commun (Camb)
January 2024
Functional fluorophores represent an emerging research field, distinguished by their diverse applications, especially in sensing and cellular imaging. After the discovery of quinine sulfate and subsequent elucidation of the fluorescence mechanism by Sir George Stokes, research in the field of fluorescence gained momentum. Over the past few decades, advancements in sophisticated instruments, including super-resolution microscopy, have further promoted cellular imaging using traditional fluorophores.
View Article and Find Full Text PDFLipid droplets (LDs) act as an energy reservoir in cancer cells; on the other hand, mitochondria are hyperactive to fulfill the energy demand to accelerate cell proliferation. We are interested in unfolding the relationship between the cellular energy reservoir and energy producer through fluorescence labeling. Thus, a dual organelle-targeted fluorescent probe has been rationally developed.
View Article and Find Full Text PDFThe intracellular pH (pHi) in organelles, including mitochondria, endoplasmic reticulum, lysosomes, and nuclei, differs from the cytoplasmic pH, and thus maintaining the pH of these organelles is crucial for cellular homeostasis. Alterations in the intracellular pH (ΔpHi) in organelles lead to the disruption of cell proliferation, ion transportation, cellular homeostasis, and even cell death. Hence, accurately mapping the pH of organelles is crucial.
View Article and Find Full Text PDFA sustainable synthesis of interesting glycine betaine derivatives from cyclic 3°-amines viz. N-methyl morpholine (), N-methyl piperidine (), and 1,4-diazabicyclo[2.2.
View Article and Find Full Text PDFBiosensors (Basel)
June 2023
Mitochondria are valuable subcellular organelles and play crucial roles in redox signaling in living cells. Substantial evidence proved that mitochondria are one of the critical sources of reactive oxygen species (ROS), and overproduction of ROS accompanies redox imbalance and cell immunity. Among ROS, hydrogen peroxide (HO) is the foremost redox regulator, which reacts with chloride ions in the presence of myeloperoxidase (MPO) to generate another biogenic redox molecule, hypochlorous acid (HOCl).
View Article and Find Full Text PDFMitochondria are the powerhouse of the cell and function at pH ∼8.0. Dysfunctions of mitochondria, includes mitochondrial damage, leading to pH alteration.
View Article and Find Full Text PDFEsterases enzymes regulate the body's homeostasis by catalyzing the hydrolysis of various esters. These are also involved in protein metabolism, detoxification, and signal transmission. Most importantly, esterase plays a significant role in cell viability and cytotoxicity assays.
View Article and Find Full Text PDFThe differentiation of the distinct phenotypes of macrophages is essential for monitoring the stage of inflammatory diseases for accurate diagnosis and treatment. Recent studies revealed that the level of hypochlorite (OCl) varies from activated M1 macrophages (killing pathogens) to M2 (resolution of inflammation) during inflammation. Thus, we developed a simple and efficient fluorescent probe for discriminating M1 from M0 and M2.
View Article and Find Full Text PDFWe report the design, synthesis, and biological evaluation of a novel class of annulated indolizines as fluorescent probes. The compounds were generated through an eco-friendly, blue LED-induced domino reaction in ethyl acetate. A library of 24 coloured compounds exhibited tuneable emissions.
View Article and Find Full Text PDFNanoscale assembly of ultrasmall metal nanoclusters (MNCs) by means of molecular forces has proven to be a powerful strategy to engineer their molecule-like properties in multiscale dimensions. By leveraging depletion attraction as the guiding force, herein, we demonstrate the formation of kinetically trapped NCs assemblies with enhanced photoluminescence (PL) and excited state lifetimes and extend the principle to cluster impregnated cationic nanogels, nonluminescent Au(I)-thiolate complexes, and weakly luminescent CuNCs. We further demonstrate a thermal energy driven kinetic barrier breaking process to isolate these assemblies.
View Article and Find Full Text PDFMitochondrial functions are heavily influenced by acid-base homeostasis. Hence, elucidation of the mitochondrial pH is essential in living cells, and its alterations during pathologies is an interesting question to be addressed. Small molecular fluorescent probes are progressively applied to quantify the mitochondrial pH by fluorescence imaging.
View Article and Find Full Text PDFThe human innate immune system eliminates invading pathogens through phagocytosis. The first step of this process is activating the nicotinamide adenine dinucleotide phosphate oxidase (Nox2) that utilizes NADPH to produce superoxide anion radicals and other reactive oxygen species (ROS). These ROS then alter the mitochondrial membrane potential and increase peroxide in the mitochondria.
View Article and Find Full Text PDFThis review explains various strategies for developing fluorescent probes to detect reactive carbonyl species (RCS). There are several mono and diacarbonyls among 30 varieties of reactive carbonyl species (RCSs) so far discovered, which play pivotal roles in pathological processes such as cancer, neurodegenerative diseases, cardiovascular disease, renal failure, and diabetes mellitus. These RCSs play essential roles in maintaining ion channel regulation, cellular signaling pathways, and metabolisms.
View Article and Find Full Text PDFFull-visible color-tunable new fluorophores are essential in bioimaging research. However, it is significantly challenging to design fluorophores with the desired optical and biological properties owing to their structural complexity. We report a unified design of an interesting molecular framework, , based on the principle of a donor-acceptor-donor (D-A-D) system.
View Article and Find Full Text PDFEfficient fluorophores with easy synthetic routes and fast responses are of great importance in clinical diagnostics. Herein, we report a new, rigid pentacyclic pyrylium fluorophore, , synthesised in a single step by a modified Vilsmeier-Haack reaction. Insights into the reaction mechanism facilitated a new reaction protocol for the efficient synthesis of which upon demethylation resulted in a "turn-on" pH sensor, .
View Article and Find Full Text PDFA unique and highly water-soluble ICT-based fluorescent probe is developed for efficient detection and discrimination of reactive monocarbonyl formaldehyde (FA) from dicarbonyl methylglyoxal (MGO)/glyoxal (GO) by modulating the ICT process, which was confirmed by photophysical and TD-DFT analysis. The probe is applied in cellular imaging and quantifying FA in preserved food and MGO in manuka honey.
View Article and Find Full Text PDF