Publications by authors named "Aneta Skaradzinska"

Bacterial cellulose (BC), an extracellular polysaccharide synthesized by various bacterial strains. It exhibits high tensile strength, water retention, crystallinity, and biocompatibility, making it valuable in biomedical, cosmetic, food, textile, and paper industries. This study examined the effects of six carbon sources on BC production by , identifying fructose as the most effective.

View Article and Find Full Text PDF

Biofilms formed by pose therapeutic challenges due to their resistance to conventional antimicrobials, highlighting the need for more effective treatments. Rhamnolipids (RLs) are biosurfactants with diverse antimicrobial properties. Bacteriophages are viruses that target specific bacterial strains.

View Article and Find Full Text PDF

Therapeutic application of bacterial viruses (phage therapy) has in recent years been rediscovered by many scientists, as a method which may potentially replace conventional antibacterial strategies. However, one of the main problems related to phage application is the stability of bacterial viruses. Though many techniques have been used to sustain phage activity, novel tools are needed to allow long-term phage storage and application in versatile forms.

View Article and Find Full Text PDF

The emerging global crisis of antibiotic resistance demands new alternative antibacterial solutions. Although bacteriophages have been used to combat bacterial infections for over a century, a dramatic boost in phage studies has recently been observed. In the development of modern phage applications, a scientific rationale is strongly required and newly isolated phages need to be examined in detail.

View Article and Find Full Text PDF

In recent years, multidrug-resistant (MDR) strains of have spread globally, being responsible for the occurrence and severity of nosocomial infections. The NDM-1-kp, VIM-1 carbapenemase-producing isolates as well as extended-spectrum beta lactamase-producing (ESBL) isolates along with strains have become emerging pathogens. Due to the growing problem of antibiotic resistance, bacteriophage therapy may be a potential alternative to combat such multidrug-resistant strains.

View Article and Find Full Text PDF

Bacteriophage potential in combating bacterial pathogens has been recognized nearly since the moment of discovery of these viruses at the beginning of the 20th century. Interest in phage application, which initially focused on medical treatments, rapidly spread throughout different biotechnological and industrial fields. This includes the food safety sector in which the presence of pathogens poses an explicit threat to consumers.

View Article and Find Full Text PDF

Background: The host-unrestricted, non-typhoidal Salmonella enterica serovar Enteritidis (S. Enteritidis) and the serovar Typhimurium (S. Typhimurium) are major causative agents of food-borne gastroenteritis, and the host-restricted Salmonella enterica serovar Gallinarum (S.

View Article and Find Full Text PDF

Infectious diseases pose a significant threat to both human and animal populations. Intracellular bacteria are a group of pathogens that invade and survive within the interior of eukaryotic cells, which in turn protect them from antibacterial drugs and the host immune system. Limited penetration of antibacterials into host cells results in insufficient bacterial clearance and treatment failure.

View Article and Find Full Text PDF

The bactericidal properties of bacteriophages have been used almost since the moment of the discovery of bacterial viruses. In the light of the rapidly growing number of antibiotic-resistant bacteria, phage therapy is considered one of the most promising alternatives to classical treatment. Phage amplification is one of the most common procedures of working with phages, and high-titer preparations are beneficial at the experimental stage of studies as well as in practice.

View Article and Find Full Text PDF

Extended-spectrum β-lactamases (ESBLs) and AmpC β-lactamases are plasmid (but also chromosomally) encoded enzymes found in Enterobacteriaceae, determining resistance to a variety of important antibiotics including penicillins, cephalosporins, and monobactams. In recent decades, the prevalence of ESBL/AmpC-producing bacteria has increased rapidly across the world. Here, we evaluate the potential use of bacteriophages in terms of a reduction of antibiotic-resistant bacteria in healthy animals.

View Article and Find Full Text PDF

Metformin, a popular drug used to treat diabetes, has recently gained attention as a potentially useful therapeutic agent for treating cancer. In our research metformin was added to in vitro cultures of bone marrow-derived multipotent mesenchymal stromal cells (BMSCs) and Balb/3T3 fibroblast at concentration of 1 mM, 5 mM, and 10 mM. Obtained results indicated that metformin negatively affected proliferation activity of investigated cells.

View Article and Find Full Text PDF