Publications by authors named "Andrew I Selwood"

Purpose: Portimine is a marine cyclic imine toxin produced by the dinoflagellate Vulcanodinium rugosum. This compound has potent apoptotic activity against cancer cells in culture. However, despite the high cytotoxicity of portimine in vitro, it has low toxicity in vivo in comparison to related cyclic imine compounds.

View Article and Find Full Text PDF

Pinnatoxins, a group of marine biotoxins primarily produced by the dinoflagellate , have garnered significant attention due to their potent toxic effects and widespread distribution in marine ecosystems. LC-MS analysis of shellfish and cultures revealed the presence of previously unidentified isomers of pinnatoxins D, E, F, and H, at levels approximately six times lower than those of known isomers. The chemical structures of these isopinnatoxins were determined using a combination of LC-MS/MS and NMR spectroscopy, which demonstrated that the isomerization of each pinnatoxin occurred through the opening and recyclization of the spiro-linked tetrahydropyranyl D-ring to form a smaller tetrahydrofuranyl ring.

View Article and Find Full Text PDF

Bioactive venoms and toxins are emerging as a promising source of drug leads. Optimized through evolution, these compounds display remarkable selectivity and ligand affinity toward a range of relevant pharmacological targets. The successful development of new drugs from toxins is hampered in some areas by the chemical complexity of the active compounds, which limits the possibility of using chemical synthesis or recombinant strategies for drug lead generation.

View Article and Find Full Text PDF

The pinnatoxins (PnTXs) and portimines, produced by , have been detected in several countries, raising concerns for human health. Although no human poisoning from these toxins has been reported so far, they have been shown to distribute throughout the rodent body after oral administration. Therefore, we investigated the impact of PnTX analogs (PnTX-A, -E, -F, -G, and -H) and portimine (8, 16, and 32 ng/mL) on intestinal barrier integrity and their oral bioavailability using human Caco-2 cell monolayers treated for 2, 6, and 24 h.

View Article and Find Full Text PDF

This study reports the first documented accumulation of lyngbyatoxin-a (LTA), a cyanotoxin produced by marine benthic cyanobacteria, in edible shellfish in Aotearoa New Zealand. The study investigates two bloom events in 2022 and 2023 on Waiheke Island, where hundreds of tonnes of marine benthic cyanobacterial mats (mBCMs) washed ashore each summer. Genetic analysis identified the cyanobacterium responsible for the blooms as sp.

View Article and Find Full Text PDF

Cyclic imines are a class of lipophilic shellfish toxins comprising gymnodimines, spirolides, pinnatoxins, portimines, pteriatoxins, prorocentrolides, spiro-prorocentrimine, symbiomines and kabirimine. They are structurally diverse, but all share an imine moiety as part of a bicyclic ring system. These compounds are produced by marine microalgal species and are characterized by the rapid death that they induce when injected into mice.

View Article and Find Full Text PDF

Saxitoxin and its derivatives, the paralytic shellfish toxins (PSTs), are well known to be toxic to humans, and maximum permitted levels in seafood have been established by regulatory authorities in many countries. Monitoring of PSTs is typically performed using chemical methods which quantify the concentration of the individual PST analogues, of which there are many. However, since the toxicities of analogues are different, they do not equally contribute to the overall toxicity of the sample.

View Article and Find Full Text PDF

Pinnatoxin G is a cyclic imine neurotoxin produced by dinoflagellates that has been reported in shellfish. Like other members of the pinnatoxin family, it has been shown to have its effects via antagonism of the nicotinic acetylcholine receptors, with preferential binding to the α7 subunit often upregulated in cancer. Because increased activity of α7 nicotinic acetylcholine receptors contributes to increased growth and resistance to apoptosis, the effect of pinnatoxin G on cancer cell viability was tested.

View Article and Find Full Text PDF

The cyanobacterium Microcoleus autumnalis grows as thick benthic mats in rivers and is becoming increasingly prevalent around the world. M. autumnalis can produce high concentrations of anatoxins and ingestion of benthic mats has led to multiple dog deaths over the past two decades.

View Article and Find Full Text PDF

A range of natural products from marine invertebrates, bacteria and fungi have been assessed as leads for nature-inspired antifouling (AF) biocides, but little attention has been paid to microalgal-derived compounds. This study assessed the AF activity of the spirocyclic imine portimine (1), which is produced by the benthic mat-forming dinoflagellate Vulcanodinium rugosum. Portimine displayed potent AF activity in a panel of four macrofouling bioassays (EC 0.

View Article and Find Full Text PDF

Ciguatera fish poisoning is a serious human health issue that is highly localized to tropical and sub-tropical coastal areas, affecting many of the indigenous island communities intrinsically linked to reef systems for sustenance and trade. It is caused by the consumption of reef fish contaminated with ciguatoxins and is reported as the most common cause of non-bacterial food poisoning. The causative toxins bioaccumulate up the food web, from small herbivorous fish that graze on microalgae of the genus Gambierdiscus into the higher trophic level omnivorous and carnivorous fish predating on them.

View Article and Find Full Text PDF

Aphanizomenon gracile is one of the most widespread Paralytic Shellfish Toxin (PST) producing cyanobacteria in freshwater bodies in the Northern Hemisphere. It has been shown to produce various PST congeners, including saxitoxin (STX), neosaxitoxin (NEO), decarbamoylsaxitoxin (dcSTX) and gonyautoxin 5 (GTX5) in Europe, North America and Asia. Three cyanobacteria strains were isolated in Lake Iznik in northwestern Turkey.

View Article and Find Full Text PDF

Paralytic shellfish poisoning results from consumption of seafood naturally contaminated by saxitoxin and its congeners, the paralytic shellfish toxins (PSTs). The levels of such toxins are regulated internationally, and maximum permitted concentrations in seafood have been established in many countries. A mouse bioassay is an approved method for estimating the levels of PSTs in seafood, but this is now being superseded in many countries by instrumental methods of analysis.

View Article and Find Full Text PDF

A capture mechanism observed in a culture of the dinoflagellate Dinophysis acuta when preying on the ciliate Mesodinium rubrum (also sometimes referred to as Myrionecta rubra) is described. The dinoflagellate released cohesive clumps of mucilage into the culture media. When M.

View Article and Find Full Text PDF

Harmful Algal Bloom species are ubiquitous and their blooms occur in the Arabian Gulf. In this study, two cruises were performed in 2012 and 2013 to collect phytoplankton samples from 4 sites in the Arabian Gulf. Toxin analyses of phytoplankton samples for 32 algal toxins from 5 different toxin groups were conducted on the samples using both enzyme linked immunosorbent assay (ELISA) and liquid chromatography-tandem mass spectrometry (LC-MS/MS).

View Article and Find Full Text PDF

Portimine is a recently discovered member of a class of marine micro-algal toxins called cyclic imines. In dramatic contrast to related compounds in this toxin class, portimine has very low acute toxicity to mice but is highly cytotoxic to cultured cells. In this study we show that portimine kills human Jurkat T-lymphoma cells and mouse embryonic fibroblasts (MEFs), with LC values of 6 and 2.

View Article and Find Full Text PDF

In this study, the effects of environmental variables on larval metamorphosis of the solitary ascidian Ciona savignyi were investigated in a laboratory setting. The progression of metamorphic changes were tracked under various temperature, photoperiod, substrate, larval density, and vessel size regimes. Metamorphosis was maximised at 18 °C, 12:12 h subdued light:dark, smooth polystyrene substrate, and 10 larvae mL(-1) in a twelve-well tissue culture plate.

View Article and Find Full Text PDF

Pinnatoxins are members of the cyclic imine group of marine phycotoxins that are highly toxic in in vivo rodent bioassays, causing rapid death due to respiratory depression. Recent studies have shown that pinnatoxins E, F and G, found in New Zealand and Australian shellfish, act as antagonists at muscle-type nicotinic acetylcholine receptors (nAChRs) at the neuromuscular junction. In the present study, binding affinities and modes of these pinnatoxin isomers at neuronal and muscle nAChRs were assessed using radioligand binding, electrophysiological and molecular modelling techniques.

View Article and Find Full Text PDF

A single-laboratory validation study was conducted for the hydrophilic interaction-LC-MS/MS analysis of paralytic shellfish toxins (PSTs) in bivalve shellfish. The method was developed as an alternative to the precolumn oxidation AOAC 2005.06 and postcolumn oxidation AOAC 2011.

View Article and Find Full Text PDF

Routine regulatory monitoring of paralytic shellfish toxins (PST) commonly employs oxidative derivitisation and complex liquid chromatography fluorescence detection methods (LC-FL). The pre-column oxidation LC-FL method is currently implemented in New Zealand and the United Kingdom. When using this method positive samples are fractionated and two different oxidations are required to confirm the identity and quantity of each PST analogue present.

View Article and Find Full Text PDF

For the first time wild-caught Tasmanian abalone, Haliotis rubra, have been reported to contain paralytic shellfish toxins (PSTs). This observation followed blooms of the toxic dinoflagellate Gymnodinium catenatum. No illnesses were reported, but harvesting restrictions were enforced in commercial areas.

View Article and Find Full Text PDF

Fluorescent molecules are regularly utilised to study ligand-receptor interactions. Many ligands for nicotinic receptors have been conjugated with fluorophores to study receptor kinetics, recycling and ligand binding characteristics. These include small agonist molecules, as well as large peptidic antagonists.

View Article and Find Full Text PDF

Pinnatoxins are produced by dinoflagellates and belong to the cyclic imine family of toxins. They are fast-acting and highly toxic when administered in vivo in rodent bioassays, causing death by respiratory depression within minutes. Studies have revealed that some cyclic imine toxins cause their toxicity by antagonizing both muscle type and heteromeric and homomeric neuronal nicotinic acetylcholine receptors (nAChRs).

View Article and Find Full Text PDF

A single-laboratory validation is reported for an LC/MS/MS quantification of six brevetoxins in four matrixes (Greenshell mussel, eastern oyster, hard clam, and Pacific oyster). Recovery and precision data were collected from seven analytical batches using shellfish flesh at 0.05 mg/kg.

View Article and Find Full Text PDF

The acute toxicities to mice of pinnatoxins E, F and G, members of the cyclic imine group of phycotoxins, by intraperitoneal injection and/or oral administration, have been determined. These substances were all very toxic by intraperitoneal injection, with LD(50) values between 12.7 and 57 μg/kg.

View Article and Find Full Text PDF