Publications by authors named "Dinesh Indurthi"

Agonists enhance receptor activity by providing net-favorable binding energy to active over resting conformations, with efficiency (η) linking binding energy to gating. Previously, we showed that in nicotinic receptors, η-values are grouped into five structural pairs, correlating efficacy and affinity within each class, uniting binding with allosteric activation (Indurthi and Auerbach, 2023). Here, we use molecular dynamics (MD) simulations to investigate the low-to-high affinity transition (L→H) at the Torpedo α-δ nicotinic acetylcholine receptor neurotransmitter site.

View Article and Find Full Text PDF

Understanding the agonist concentration-response curve (CRC) is the cornerstone in pharmacology. While CRC parameters, agonist potency (EC) and efficacy (maximum response, I) are well-studied, the role of unliganded gating (minimum response, I) on CRC is often overlooked. This study explores the effect of unliganded gating on agonist response in muscle-type acetylcholine (ACh) receptors, focusing on the underexplored role of I in modulating EC and I.

View Article and Find Full Text PDF

Background: Human restricted genes contribute to human specific traits in the immune system. CHRFAM7A, a uniquely human fusion gene, is a negative regulator of the α7 nicotinic acetylcholine receptor (α7 nAChR), the highest Ca conductor of the ACh receptors implicated in innate immunity. Understanding the mechanism of how CHRFAM7A affects the immune system remains unexplored.

View Article and Find Full Text PDF

Receptors signal by switching between resting (C) and active (O) shapes ('gating') under the influence of agonists. The receptor's maximum response depends on the difference in agonist binding energy, O minus C. In nicotinic receptors, efficiency (η) represents the fraction of agonist binding energy applied to a local rearrangement (an induced fit) that initiates gating.

View Article and Find Full Text PDF

Agonists are evaluated by a concentration-response curve (CRC), with a midpoint (EC) that indicates potency, a high-concentration asymptote that indicates efficacy, and a low-concentration asymptote that indicates constitutive activity. A third agonist attribute, efficiency (η), is the fraction of binding energy that is applied to the conformational change that activates the receptor. We show that η can be calculated from EC and the asymptotes of a CRC derived from either single-channel or whole-cell responses.

View Article and Find Full Text PDF

Variants in the gene encoding the β3-subunit of the γ-aminobutyric acid type A ( receptor are associated with various developmental and epileptic encephalopathies. Typically, these variants cause a loss-of-function molecular phenotype whereby γ-aminobutyric acid has reduced inhibitory effectiveness leading to seizures. Drugs that potentiate inhibitory GABAergic activity, such as nitrazepam, phenobarbital or vigabatrin, are expected to compensate for this and thereby reduce seizure frequency.

View Article and Find Full Text PDF

Background: Cholinergic neuronal loss is one of the hallmarks of AD related neurodegeneration; however, preclinical promise of α7 nAChR drugs failed to translate into humans. CHRFAM7A, a uniquely human fusion gene, is a negative regulator of α7 nAChR and was unaccounted for in preclinical models.

Methods: Molecular methods: Function of CHRFAM7A alleles was studied in vitro in two disease relevant phenotypic readouts: electrophysiology and Aβ uptake.

View Article and Find Full Text PDF

Sensitivity to microtubule-targeting agents (MTAs) varies among cancers and predicting the response of individual cancer patients to MTAs remains challenging. As microtubules possess vast molecular heterogeneity generated by tubulin isotypes and their post-translational modifications, we questioned whether this heterogeneity can impact MTA sensitivity. We investigated microtubule heterogeneity in 15 glioblastoma cell lines and measured sensitivity of orthogonal MTAs using a per-division growth rate inhibition method that corrects for the confounding effects of variable cell proliferation rates.

View Article and Find Full Text PDF

Nicotinic acetylcholine (nACh) receptors are pentameric ligand-gated ion channels that mediate fast synaptic transmission. The α4β2 nACh receptor is highly expressed in the brain and exists in two functional stoichiometries: the (α4)(β2) and (α4)(β2) that differ by an ACh-binding site at the α4-α4 interface of (α4)(β2) receptors. Methyllycaconitine (MLA) is an nACh receptor antagonist, and while potent at both α7 and α4β2 nACh receptors, it has a higher selectivity for the α7 nACh receptor.

View Article and Find Full Text PDF

Neurodegenerative disorders, including Alzheimer's disease, belong to the group of the most difficult and challenging conditions with very limited treatment options. Attempts to find new drugs in most cases fail at the clinical stage. New tactics to develop better drug candidates to manage these diseases are urgently needed.

View Article and Find Full Text PDF

Autosomal dominant nocturnal frontal lobe epilepsy (ADNFLE) is a genetic form of epilepsy that is caused by mutations in several genes, including genes encoding for the α4 and β2 subunits of the nicotinic acetylcholine (nACh) receptor. Pentameric α4β2 nACh receptors are the most abundant nicotinic receptor in the mammalian brain and form two stoichiometries, the (α4)(β2) and (α4)(β2) receptors that differ in their physiological and pharmacological properties. The purpose of this study was to investigate how ADNFLE mutations β2, β2 or α manifest themselves in different receptor stoichiometries.

View Article and Find Full Text PDF

The α4β2 nicotinic acetylcholine receptor (nAChR) is the most abundant subtype in the brain and exists in two functional stoichiometries: (α4)3(β2)2 and (α4)2(β2)3. A distinct feature of the (α4)3(β2)2 receptor is the biphasic activation response to the endogenous agonist acetylcholine, where it is activated with high potency and low efficacy when two α4-β2 binding sites are occupied and with low potency/high efficacy when a third α4-α4 binding site is occupied. Further, exogenous ligands can bind to the third α4-α4 binding site and potentiate the activation of the receptor by ACh that is bound at the two α4-β2 sites.

View Article and Find Full Text PDF

Pinnatoxins are members of the cyclic imine group of marine phycotoxins that are highly toxic in in vivo rodent bioassays, causing rapid death due to respiratory depression. Recent studies have shown that pinnatoxins E, F and G, found in New Zealand and Australian shellfish, act as antagonists at muscle-type nicotinic acetylcholine receptors (nAChRs) at the neuromuscular junction. In the present study, binding affinities and modes of these pinnatoxin isomers at neuronal and muscle nAChRs were assessed using radioligand binding, electrophysiological and molecular modelling techniques.

View Article and Find Full Text PDF

Conformational restriction of the pyrrolidine nitrogen in nicotine by the introduction of an ethylene bridge provided a potent and selective antagonist of the α4β2-subtype of the nicotinic acetylcholine receptors. Resolution by chiral SFC, pharmacological characterization of the two enantiomers, and determination of absolute configuration via enantioselective synthesis showed that the pharmacological activity resided almost exclusively in the (R)-enantiomer.

View Article and Find Full Text PDF

The nicotinic acetylcholine receptor α4β2 is important for normal mammalian brain function and is known to express in two different stoichiometries, (α4)2(β2)3 and (α4)3(β2)2. While these are similar in many aspects, the (α4)3(β2)2 stoichiometry differs by harboring a third orthosteric acetylcholine binding site located at the α4-α4 interface. Interestingly, the third binding site has, so far, only been documented using electrophysiological assays, actual binding affinities of nicotinic receptor ligands to this site are not known.

View Article and Find Full Text PDF

Nicotinic acetylcholine receptors (nAChRs) are ligand-gated ion channels involved in fast synaptic transmission. nAChRs are pentameric receptors formed from a combination of different or similar subunits to produce heteromeric or homomeric channels. The heteromeric, α9α10 nAChR subtype is well-known for its role in the auditory system, being expressed in cochlear hair cells.

View Article and Find Full Text PDF

Synthetic acid tolerance, especially during active cell growth, is a desirable phenotype for many biotechnological applications. Natively, acid resistance in Escherichia coli is largely a stationary-phase phenotype attributable to mechanisms mostly under the control of the stationary-phase sigma factor RpoS. We show that simultaneous overexpression of noncoding small RNAs (sRNAs), DsrA, RprA and ArcZ, which are translational RpoS activators, increased acid tolerance (based on a low-pH survival assay) supra-additively up to 8500-fold during active cell growth, and provided protection against carboxylic acid and oxidative stress.

View Article and Find Full Text PDF

Clostridia are anaerobic Firmicutes producing a large array of metabolites by utilizing simple and complex carbohydrates, such as cellulose, as well as CO2/H2 or CO. Their exceptional substrate diversity is enhanced by their ability to produce a broad spectrum of chemicals that can be used as precursors to or directly as biofuels and industrial chemicals. Genetic and genomic tools are under intense development, and recent efforts to metabolically engineer clostridia demonstrate their potential for biofuel and biorefinery applications.

View Article and Find Full Text PDF

Solventogenic clostridia are an important class of microorganisms that can produce various biofuels. One of the bottlenecks in engineering clostridia stems from the fact that central metabolic pathways remain poorly understood. Here, we utilized the power of (13) C-based isotopomer analysis to re-examine central metabolic pathways of Clostridium acetobutylicum ATCC 824.

View Article and Find Full Text PDF

The genus Clostridium includes major human pathogens and species important to cellulose degradation, the carbon cycle, and biotechnology. Small RNAs (sRNAs) are emerging as crucial regulatory molecules in all organisms, but they have not been investigated in clostridia. Research on sRNAs in clostridia is hindered by the absence of a systematic method to identify sRNA candidates, thus delegating clostridial sRNA research to a hit-and-miss process.

View Article and Find Full Text PDF

We generated a genomic library from sheared Clostridium acetobutylicum ATCC 824 DNA, whereby inserts can be expressed in both directions from the thiolase promoter, P(thl). Serial transfer of library-bearing C. acetobutylicum cultures exposed to increasing butyrate concentrations enriched for inserts containing fragments of rRNA genetic loci.

View Article and Find Full Text PDF