Publications by authors named "Andreas Moosmann"

In this study, we established a comprehensive workflow to collect multi-omics single-cell data using a commercially available micro-well-based platform. This included whole transcriptome, cell surface markers (targeted sequencing-based cell surface proteomics), T cell specificities, adaptive immune receptor repertoire (AIRR) profiles, and sample multiplexing. With this technique, we identified paired T cell receptor sequences for three prominent human CMV epitopes.

View Article and Find Full Text PDF

Acquired aplastic anemia is a bone marrow failure syndrome characterized by hypocellular bone marrow and peripheral blood pancytopenia. Frequent clinical responses to calcineurin inhibition and antithymocyte globulin strongly suggest critical roles for hematopoietic stem/progenitor cell-reactive T-cell clones in disease pathophysiology; however, their exact contribution and antigen specificities remain unclear. We determined differentiation states and targets of dominant T-cell clones along with their potential to eliminate hematopoietic progenitor cells in the bone marrow of 15 patients with acquired aplastic anemia.

View Article and Find Full Text PDF

Epstein-Barr virus (EBV) latent membrane protein 1 (LMP1) drives viral B cell transformation and oncogenesis. LMP1's transforming activity depends on its C-terminal activation region 2 (CTAR2), which induces NF-κB and JNK by engaging TNF receptor-associated factor 6 (TRAF6). The mechanism of TRAF6 recruitment to LMP1 and its role in LMP1 signalling remains elusive.

View Article and Find Full Text PDF

Introduction: Allogeneic stem cell transplantation is used to cure hematologic malignancies or deficiencies of the hematopoietic system. It is associated with severe immunodeficiency of the host early after transplant and therefore early reactivation of latent herpesviruses such as CMV and EBV within the first 100 days are frequent. Small studies and case series indicated that application of herpes virus specific T cells can control and prevent disease in this patient population.

View Article and Find Full Text PDF

Purpose: Lung transplant recipients are at increased risk of severe disease following infection with severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2) due to high-dose immunosuppressive drugs and the lung is the main organ affected by Coronavirus disease 2019 (COVID-19). Several studies have confirmed increased SARS-CoV-2-related mortality and morbidity in patients living with lung allografts; however, detailed immunological studies of patients with SARS-CoV-2 infection in the early phase following transplantation remain scarce.

Methods: We investigated patients who were infected with SARS-CoV-2 in the early phase (18-103 days) after receiving double-lung allografts (n = 4, LuTx) in comparison to immunocompetent patients who had not received solid organ transplants (n = 88, noTx).

View Article and Find Full Text PDF

Background: Virus infections drive COPD exacerbations and progression. Antiviral immunity centres on the activation of virus-specific CD8 T-cells by viral epitopes presented on major histocompatibility complex (MHC) class I molecules of infected cells. These epitopes are generated by the immunoproteasome, a specialised intracellular protein degradation machine, which is induced by antiviral cytokines in infected cells.

View Article and Find Full Text PDF

Individuals with hematologic malignancies are at increased risk for severe coronavirus disease 2019 (COVID-19), yet profound analyses of COVID-19 vaccine-induced immunity are scarce. Here we present an observational study with expanded methodological analysis of a longitudinal, primarily BNT162b2 mRNA-vaccinated cohort of 60 infection-naive individuals with B cell lymphomas and multiple myeloma. We show that many of these individuals, despite markedly lower anti-spike IgG titers, rapidly develop potent infection neutralization capacities against several severe acute respiratory syndrome coronavirus 2 variants of concern (VoCs).

View Article and Find Full Text PDF

Antibody-dependent cellular phagocytosis (ADCP) by macrophages, an important effector function of tumor targeting antibodies, is hampered by 'Don´t Eat Me!' signals such as CD47 expressed by cancer cells. Yet, human leukocyte antigen (HLA) class I expression may also impair ADCP by engaging leukocyte immunoglobulin-like receptor subfamily B (LILRB) member 1 (LILRB1) or LILRB2. Analysis of different lymphoma cell lines revealed that the ratio of CD20 to HLA class I cell surface molecules determined the sensitivity to ADCP by the combination of rituximab and an Fc-silent variant of the CD47 antibody magrolimab (CD47-IgGσ).

View Article and Find Full Text PDF

Understanding immune responses to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is crucial to contain the COVID-19 pandemic. Using a multiplex approach, serum IgG responses against the whole SARS-CoV-2 proteome and the nucleocapsid proteins of endemic human coronaviruses (HCoVs) were measured in SARS-CoV-2-infected donors and healthy controls. COVID-19 severity strongly correlated with IgG responses against the nucleocapsid (N) of SARS-CoV-2 and possibly with the number of viral antigens targeted.

View Article and Find Full Text PDF

Antibodies against the spike protein of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) can drive adaptive evolution in immunocompromised patients with chronic infection. Here we longitudinally analyze SARS-CoV-2 sequences in a B cell-depleted, lymphoma patient with chronic, ultimately fatal infection, and identify three mutations in the spike protein that dampen convalescent plasma-mediated neutralization of SARS-CoV-2. Additionally, four mutations emerge in non-spike regions encoding three CD8 T cell epitopes, including one nucleoprotein epitope affected by two mutations.

View Article and Find Full Text PDF

Multiple myeloma is a hematologic malignancy of monoclonal plasma cells that accumulate in the bone marrow. Despite their clinical and pathophysiologic relevance, the roles of bone marrow-infiltrating T cells in treatment-naïve patients are incompletely understood. We investigated whether clonally expanded T cells (i) were detectable in multiple myeloma bone marrow, (ii) showed characteristic immune phenotypes, and (iii) whether dominant clones recognized antigens selectively presented on multiple myeloma cells.

View Article and Find Full Text PDF

Background: COVID-19 has so far affected more than 250 million individuals worldwide, causing more than 5 million deaths. Several risk factors for severe disease have been identified, most of which coincide with advanced age. In younger individuals, severe COVID-19 often occurs in the absence of obvious comorbidities.

View Article and Find Full Text PDF

Background And Aims: Epstein-Barr virus (EBV) is associated with solid and hematopoietic malignancies. After allogeneic stem cell transplantation, EBV infection or reactivation represents a potentially life-threatening condition with no specific treatment available in clinical routine. In vitro expansion of naturally occurring EBV-specific T cells for adoptive transfer is time-consuming and influenced by the donor's T-cell receptor (TCR) repertoire and requires a specific memory compartment that is non-existent in seronegative individuals.

View Article and Find Full Text PDF
Article Synopsis
  • After a special type of stem cell transplant, a patient's T cells (which help fight off viruses) don't work well and can't fight off the Epstein-Barr virus (EBV) effectively.
  • Doctors made new T cells from the donor that are good at fighting EBV and gave them to the patient who was struggling with high levels of the virus.
  • The new T cells worked well, stayed in the patient for a long time, and helped control the EBV, which helped prevent the cancer from coming back.
View Article and Find Full Text PDF

Relapsed follicular lymphoma (FL) can arise from common progenitor cells (CPCs). Conceptually, CPC-defining mutations are somatic alterations shared by the initial and relapsed tumours, mostly B-cell leukaemia/lymphoma 2 (BCL2)/immunoglobulin heavy locus (IGH) translocations and other recurrent gene mutations. Through complementary approaches for highly sensitive mutation detection, we do not find CPC-defining mutations in highly purified BCL2/IGH-negative haematopoietic progenitor cells in clinical remission samples from three patients with relapsed FL.

View Article and Find Full Text PDF

The case describes the coincidental mRNA vaccination and SARS-CoV-2 infection of a 31-year-old physician addressing the theoretical considerations and recommendations for further actions in such a particular constellation that we will expect more often in the near future.

View Article and Find Full Text PDF

Viral immune evasion is currently understood to focus on deflecting CD8 T cell recognition of infected cells by disrupting antigen presentation pathways. We evaluated viral interference with the ultimate step in cytotoxic T cell function, the death of infected cells. The viral inhibitor of caspase-8 activation (vICA) conserved in human cytomegalovirus (HCMV) and murine CMV (MCMV) prevents the activation of caspase-8 and proapoptotic signaling.

View Article and Find Full Text PDF

Objectives: Innovative post-remission therapies are needed to eliminate residual AML cells. DC vaccination is a promising strategy to induce anti-leukaemic immune responses.

Methods: We conducted a first-in-human phase I study using TLR7/8-matured DCs transfected with RNA encoding the two AML-associated antigens WT1 and PRAME as well as CMVpp65.

View Article and Find Full Text PDF

IκB kinase 2 (IKK2) is well known for its pivotal role as a mediator of the canonical NF-κB pathway, which has important functions in inflammation and immunity, but also in cancer. Here we identify a novel and critical function of IKK2 and its co-factor NEMO in the activation of oncogenic c-Jun N-terminal kinase (JNK) signaling, induced by the latent membrane protein 1 (LMP1) of Epstein-Barr virus (EBV). Independent of its kinase activity, the TGFβ-activated kinase 1 (TAK1) mediates LMP1 signaling complex formation, NEMO ubiquitination and subsequent IKK2 activation.

View Article and Find Full Text PDF

CMV is a prevalent human pathogen. The virus cannot be eliminated from the body, but is kept in check by CMV-specific T cells. Patients with an insufficient T cell response, such as transplant recipients, are at high risk of developing CMV disease.

View Article and Find Full Text PDF

Background: A major complication after allogeneic hematopoietic stem cell transplantation (aSCT) is the reactivation of herpesviruses such as cytomegalovirus (CMV) and Epstein-Barr virus (EBV). Both viruses cause significant mortality and compromise quality of life after aSCT. Preventive transfer of virus-specific T cells can suppress reactivation by re-establishing functional antiviral immune responses in immunocompromised hosts.

View Article and Find Full Text PDF

Human herpesvirus 6 (HHV-6) is prevalent in healthy persons, causes disease in immunosuppressed carriers, and may be involved in autoimmune disease. Cytotoxic CD8 T cells are probably important for effective control of infection. However, the HHV-6-specific CD8 T cell repertoire is largely uncharacterized.

View Article and Find Full Text PDF
Article Synopsis
  • Human Cytomegalovirus (CMV) reactivation is a significant health issue for patients after organ transplants, and using CMV-specific T cell therapy shows promise despite challenges from CMV’s immune evasion.
  • The study focuses on HLA-C*07:02, which allows for targeting specific CMV viral epitopes for more effective T cell therapy, showing high frequencies of these T cells in healthy individuals but with some complications relating to other immune cell interactions.
  • A new double-staining technique improved the identification of true CMV-specific T cells, revealing a strong correlation between the identified T cells and their ability to secrete IFNγ, thus enhancing their potential for adoptive T cell therapy as a treatment approach.
View Article and Find Full Text PDF

The Epstein-Barr virus (EBV) establishes lifelong infections in > 90% of the human population. Although contained as asymptomatic infection by the immune system in most individuals, EBV is associated with the pathogenesis of approximately 1.5% of all cancers in humans.

View Article and Find Full Text PDF

Infection with human cytomegalovirus (HCMV) can cause severe complications in newborns and immunocompromised patients, and a prophylactic or therapeutic vaccine against HCMV is not available. Here, we generated a HCMV vaccine candidate fulfilling the regulatory requirements for GMP-compliant production and clinical testing. A novel synthetic fusion gene consisting of the coding sequences of HCMV pp65 and IE1 having a deleted nuclear localization sequence and STAT2 binding domain was introduced into the genome of the attenuated vaccinia virus strain MVA.

View Article and Find Full Text PDF