98%
921
2 minutes
20
In this study, we established a comprehensive workflow to collect multi-omics single-cell data using a commercially available micro-well-based platform. This included whole transcriptome, cell surface markers (targeted sequencing-based cell surface proteomics), T cell specificities, adaptive immune receptor repertoire (AIRR) profiles, and sample multiplexing. With this technique, we identified paired T cell receptor sequences for three prominent human CMV epitopes. In addition, we assessed the ability of dCODE dextramers to detect antigen-specific T cells at low frequencies by estimating sensitivities and specificities when used as reagents for single-cell multi-omics.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12296424 | PMC |
http://dx.doi.org/10.1016/j.crmeth.2025.101085 | DOI Listing |
Chembiochem
September 2025
Department of Chemistry, University of Florida, Gainesville, FL, 32611, USA.
Mechanoglycobiology has emerged as a rapidly expanding interdisciplinary field that involves chemistry, biology, and engineering. Despite the great advancements in this field, in-depth investigation of mechanoglycobiology remains challenging due to the complex nature of glycans and cell glycocalyx, as well as the difficulty to mechanically target these biomolecules. To address the issues, novel methods and models have been established to facilitate the investigation of glycan-mediated mechanosensing and mechanotransduction.
View Article and Find Full Text PDFPhilos Trans A Math Phys Eng Sci
September 2025
Department of Bioscience and Engineering, Shibaura Institute of Technology, Saitama, Japan.
The physical environment exerts a profound influence on microbial life. The directional movement of cells in response to their physical environment is understood as taxis, which has been studied in biology as chemotaxis, phototaxis, gravitaxis and so forth. These taxis are induced by physiological, physical or both factors.
View Article and Find Full Text PDFPhilos Trans A Math Phys Eng Sci
September 2025
School of Physics, Engineering & Technology, University of York, York, UK.
Microscopic swimmers, such as bacteria and archaea, are paradigmatic examples of active matter systems. The study of these systems has given rise to novel concepts such as rectification of bacterial swimmers, in which microstructures can passively separate swimmers from non-swimming, inert particles. Many bacteria and archaea swim using rotary molecular motors to drive helical propellers called flagella or archaella.
View Article and Find Full Text PDFPhilos Trans A Math Phys Eng Sci
September 2025
D-BAUG, ETH Zurich, Zürich 8093, Switzerland.
Biofilms-microbial communities encased in a self-produced extracellular matrix-pose a significant challenge in clinical settings due to their association with chronic infections and antibiotic resistance. Their formation in the human body is governed by a complex interplay of biological and environmental factors, including the biochemical composition of bodily fluids, fluid dynamics, and cell-cell and cell-surface interactions. Improving therapeutic strategies requires a deeper understanding of how host-specific conditions shape biofilm development.
View Article and Find Full Text PDFPhilos Trans A Math Phys Eng Sci
September 2025
Department of Biology, Dalhousie University, Halifax, Nova Scotia, Canada.
Flagellates, unicellular organisms equipped with one or a few flagella, are phylogenetically and functionally hugely diverse. Yet, most studies have focused on a few model organisms and on the role of the flagellum in propulsion, ignoring the fundamental role of the flagellum in foraging. The number and position of flagella vary between species; the flagella may be naked or equipped with vanes or hairs; the kinematics and wave patterns vary and may be planar or three-dimensional; and the flagellum may extend from the surface of the cell or lie within a groove on the cell surface.
View Article and Find Full Text PDF