J Neurosci Methods
August 2025
CLARITY is a technique that makes tissues optically transparent, enabling the clear visualization of complex cellular and subcellular structures with relative ease. Traditionally, this technique has been used to visualize the pathologies of certain diseases. In the case of Alzheimer's disease (AD), the CLARITY technique of clearing lipids from tissues has enabled precise visualization of amyloid-beta (Aβ) and tau pathologies with a temporal analysis of the extent of protein aggregation associated with disease progression.
View Article and Find Full Text PDFBillions of microorganisms inhabit the human gut and maintain overall health. Recent research has revealed the intricate interaction between the brain and gut microbiota through the microbiota-gut-brain axis (MGBA) and its effect on neurodegenerative disorders (NDDs). Alterations in the gut microbiota, known as gut dysbiosis, are linked to the development and progression of several NDDs.
View Article and Find Full Text PDFNeurodegenerative disorders (NDDs) have been prevalent for more than a decade, and the number of individuals affected per year has increased exponentially. Among these NDDs, Alzheimer's disease, which causes extreme cognitive impairment, and Parkinson's disease, characterized by impairments in motor activity, are the most prevalent. While few treatments are available for clinical practice, they have minimal effects on reversing the neurodegeneration associated with these debilitating diseases.
View Article and Find Full Text PDFThe microbiota-gut-brain axis is a pivotal medium of crosstalk between the central nervous system (CNS) and the gastrointestinal tract. It is an intricate network of synergistic molecular pathways that exert their effects far beyond their local vicinity and even affect the systemic functioning of the body. The current review explores the involvement of the gut-brain axis (GBA) in the functioning of the nervous system, with a special emphasis on the neurodegeneration, cognitive decline, and neuroinflammation that occur in Alzheimer's disease (AD) and Parkinson's disease (PD).
View Article and Find Full Text PDFCell Mol Neurobiol
October 2024
Aging, an inevitable physiological process leading to a progressive decline in bodily functions, has been an abundantly researched domain with studies attempting to slow it down and reduce its debilitating effects. Investigations into the cellular and molecular pathways associated with aging have allowed the formulation of therapeutic strategies. Of these, caloric restriction (CR) has been implicated for its role in promoting healthy aging by modulating key molecular targets like Insulin/IGF-1, mTOR, and sirtuins.
View Article and Find Full Text PDFPsychedelics have traditionally been used for spiritual and recreational purposes, but recent developments in psychotherapy have highlighted their potential as therapeutic agents. These compounds, which act as potent 5-hydroxytryptamine (5HT) agonists, have been recognized for their ability to enhance neural plasticity through the activation of the serotoninergic and glutamatergic systems. However, the implications of these findings for the treatment of neurodegenerative disorders, particularly dementia, have not been fully explored.
View Article and Find Full Text PDFAdv Protein Chem Struct Biol
July 2023
Aging is an inevitable phenomenon that causes a decline in bodily functions over time. One of the most important processes that play a role in aging is senescence. Senescence is characterized by accumulation of cells that are no longer functional but elude the apoptotic pathway.
View Article and Find Full Text PDF