Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Billions of microorganisms inhabit the human gut and maintain overall health. Recent research has revealed the intricate interaction between the brain and gut microbiota through the microbiota-gut-brain axis (MGBA) and its effect on neurodegenerative disorders (NDDs). Alterations in the gut microbiota, known as gut dysbiosis, are linked to the development and progression of several NDDs. Studies suggest that the gut microbiota may be a viable target for improving cognitive health and reducing hallmarks of brain aging. Numerous pathways including hypothalamic-pituitary-adrenal axis stimulation, neurotransmitter release disruption, system-wide inflammation, and increased intestinal and blood-brain barrier permeability connect gut dysbiosis to neurological conditions. Metabolites produced by the gut microbiota influence neural processes that affect brain function. Clinical interventions depend on the capacity to understand the equilibrium between beneficial and detrimental gut microbiota, as it affects both neurodegeneration and neuroprotection. The importance of the gut microbiota and its metabolites during brain aging and the development of neurological disorders is summarized in this review. Moreover, we explored the possible therapeutic effects of the gut microbiota on age-related NDDs. Highlighting various pathways that connect the gut and the brain, this review identifies several important domains where gut microbiota-based interventions could offer possible solutions for age-related NDDs. Furthermore, prebiotics and probiotics are discussed as effective alternatives for mitigating indirect causes of gut dysbiosis. These therapeutic interventions are poised to play a significant role in improving dysbiosis and NDDs, paving the way for further research.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.neuroscience.2025.03.020DOI Listing

Publication Analysis

Top Keywords

gut microbiota
32
gut
14
gut dysbiosis
12
microbiota
8
neurological disorders
8
brain aging
8
connect gut
8
age-related ndds
8
brain
5
ndds
5

Similar Publications

Introduction: Anxiety and stress are prevalent mental health issues. Traditional drug treatments often come with unwanted side effects and may not produce the desired results. As an alternative, probiotics are being used as a treatment option due to their lack of specific side effects.

View Article and Find Full Text PDF

Microbiome dysbiosis in reflux esophagitis has been extensively studied. However, limited research has examined microbiota across different segments of the upper gastrointestinal tract in reflux esophagitis. In this study, we investigated microbial alterations in three esophageal segments (upper, middle, and lower) and the gastric fundus of reflux esophagitis patients and healthy controls.

View Article and Find Full Text PDF

Background: Improving the efficacy of anti-programmed death 1 (PD-1) monoclonal antibody (mAb) therapy remains a major challenge for cancer immunotherapy in non-small cell lung cancer (NSCLC). Gut microbial metabolites can influence immunotherapy efficacy.

Methods: ELISA was used to compare the serum 5-hydroxyindoleacetic acid (5-HIAA) level in patients with NSCLC.

View Article and Find Full Text PDF