Background: Automated estimation of cortical thickness in brain MRI is a critical step when investigating neuroanatomical population differences and changes associated with normal development and aging, as well as in neurodegenerative diseases such as Alzheimer's and Parkinson's. The limited spatial resolution of the scanner leads to partial volume effects, where each voxel in the scanned image may represent a mixture of more than one type of tissue. Due to the highly convoluted structure of the cortex, this can have a significant impact on the accuracy of thickness estimates, particularly if a hard intensity threshold is used to delineate cortical boundaries.
View Article and Find Full Text PDFRecent neurosurgery advancements include improved stereotactic targeting and increased electrode contacts. This study introduces a subject-specific, in silico modeling tool for optimizing electrode placement and maximizing coverage with a variety of devices. The basis for optimization is the inherent information patterns of field potentials derived from dipolar sources.
View Article and Find Full Text PDFIEEE Trans Med Imaging
March 2025
Segmentation is a critical step in analyzing the developing human fetal brain. There have been vast improvements in automatic segmentation methods in the past several years, and the Fetal Brain Tissue Annotation (FeTA) Challenge 2021 helped to establish an excellent standard of fetal brain segmentation. However, FeTA 2021 was a single center study, limiting real-world clinical applicability and acceptance.
View Article and Find Full Text PDFPurpose: To investigate the feasibility of diffusion tensor brain imaging at 0.55T with comparisons against 3T.
Methods: Diffusion tensor imaging data with 2 mm isotropic resolution was acquired on a cohort of five healthy subjects using both 0.
Despite the impressive advancements achieved using deep-learning for functional brain activity analysis, the heterogeneity of functional patterns and scarcity of imaging data still pose challenges in tasks such as prediction of future onset of Post-Traumatic Epilepsy (PTE) from data acquired shortly after traumatic brain injury (TBI). Foundation models pre-trained on separate large-scale datasets can improve the performance from scarce and heterogeneous datasets. For functional Magnetic Resonance Imaging (fMRI), while data may be abundantly available from healthy controls, clinical data is often scarce, limiting the ability of foundation models to identify clinically-relevant features.
View Article and Find Full Text PDFWe present , an unsupervised multi-step framework that can filter, denoise and subsample bundles derived from diffusion MRI-based whole-brain tractography. Our approach considers both the global bundle structure and local streamline-wise features. We apply to bundles generated from single-shell diffusion MRI data in an independent clinical sample of older adults from India using probabilistic tractography and the resulting 'cleaned' bundles can better align with the atlas bundles with reduced overreach.
View Article and Find Full Text PDFThere has been a concerted effort by the neuroimaging community to establish standards for computational methods for data analysis that promote reproducibility and portability. In particular, the Brain Imaging Data Structure (BIDS) specifies a standard for storing imaging data, and the related BIDS App methodology provides a standard for implementing containerized processing environments that include all necessary dependencies to process BIDS datasets using image processing workflows. We present the BrainSuite BIDS App, which encapsulates the core MRI processing functionality of BrainSuite within the BIDS App framework.
View Article and Find Full Text PDFThe presence of outliers can severely degrade learned representations and performance of deep learning methods and hence disproportionately affect the training process, leading to incorrect conclusions about the data. For example, anomaly detection using deep generative models is typically only possible when similar anomalies (or outliers) are not present in the training data. Here we focus on variational autoencoders (VAEs).
View Article and Find Full Text PDFJ Mach Learn Biomed Imaging
April 2022
Despite impressive state-of-the-art performance on a wide variety of machine learning tasks in multiple applications, deep learning methods can produce over-confident predictions, particularly with limited training data. Therefore, quantifying uncertainty is particularly important in critical applications such as lesion detection and clinical diagnosis, where a realistic assessment of uncertainty is essential in determining surgical margins, disease status and appropriate treatment. In this work, we propose a novel approach that uses quantile regression for quantifying aleatoric uncertainty in both supervised and unsupervised lesion detection problems.
View Article and Find Full Text PDFJ Neurosci Methods
May 2022
We present a new high-quality, single-subject atlas with sub-millimeter voxel resolution, high SNR, and excellent gray-white tissue contrast to resolve fine anatomical details. The atlas is labeled into two parcellation schemes: 1) the anatomical BCI-DNI atlas, which is manually labeled based on known morphological and anatomical features, and 2) the hybrid USCBrain atlas, which incorporates functional information to guide the sub-parcellation of cerebral cortex. In both cases, we provide consistent volumetric and cortical surface-based parcellation and labeling.
View Article and Find Full Text PDFWe explored the utility of the real-time FLIPR Membrane Potential (FMP) assay as a method to assess kappa opioid receptor (KOR)-induced hyperpolarization. The FMP Blue dye was used to measure fluorescent signals reflecting changes in membrane potential in KOR expressing CHO (CHO-KOR) cells. Treatment of CHO-KOR cells with kappa agonists U50,488 or dynorphin [Dyn (1-13)NH] produced rapid and concentration-dependent decreases in FMP Blue fluorescence reflecting membrane hyperpolarization.
View Article and Find Full Text PDFObjective: Stereotactic electroencephalography (SEEG) has been widely used to explore the epileptic network and localize the epileptic zone in patients with medically intractable epilepsy. Accurate anatomical labeling of SEEG electrode contacts is critically important for correctly interpreting epileptic activity. We present a method for automatically assigning anatomical labels to SEEG electrode contacts using a 3D-segmented cortex and coregistered postoperative CT images.
View Article and Find Full Text PDFProc IEEE Int Symp Biomed Imaging
April 2020
Automated brain lesion detection from multi-spectral MR images can assist clinicians by improving sensitivity as well as specificity. Supervised machine learning methods have been successful in lesion detection. However, these methods usually rely on a large number of manually delineated images for specific imaging protocols and parameters and often do not generalize well to other imaging parameters and demographics.
View Article and Find Full Text PDFProc IEEE Int Symp Biomed Imaging
April 2020
Identifying changes in functional connectivity in Attention Deficit Hyperactivity Disorder (ADHD) using functional magnetic resonance imaging (fMRI) can help us understand the neural substrates of this brain disorder. Many studies of ADHD using resting state fMRI (rs-fMRI) data have been conducted in the past decade with either manually crafted features that do not yield satisfactory performance, or automatically learned features that often lack interpretability. In this work, we present a tensor-based approach to identify brain networks and extract features from rs-fMRI data.
View Article and Find Full Text PDFNeuroimage
February 2021
We describe a novel method for robust identification of common brain networks and their corresponding temporal dynamics across subjects from asynchronous functional MRI (fMRI) using tensor decomposition. We first temporally align asynchronous fMRI data using the orthogonal BrainSync transform, allowing us to study common brain networks across sessions and subjects. We then map the synchronized fMRI data into a 3D tensor (vertices × time × subject/session).
View Article and Find Full Text PDFMed Image Comput Comput Assist Interv
October 2019
The human brain exhibits dynamic interactions among brain regions when responding to stimuli and executing tasks, which can be recorded using functional magnetic resonance imaging (fMRI). Functional MRI signals collected in response to specific tasks consist of a combination of task-related and spontaneous (task-independent) activity. By exploiting the highly structured spatiotemporal patterns of resting state networks, this paper presents a matched-filter approach to decomposing fMRI signals into task and resting-state components.
View Article and Find Full Text PDFBackground: Intracerebral electroencephalography (iEEG) using stereoelectroencephalography (SEEG) methodology for epilepsy surgery gives rise to complex data sets. The neurophysiological data obtained during the in-patient period includes categorization of the evoked potentials resulting from direct electrical cortical stimulation such as cortico-cortical evoked potentials (CCEPs). These potentials are recorded by hundreds of contacts, making these waveforms difficult to quickly interpret over such high-density arrays that are organized in three dimensional fashion.
View Article and Find Full Text PDFCharacterizing functional brain connectivity using resting functional magnetic resonance imaging (fMRI) is challenging due to the relatively small Blood-Oxygen-Level Dependent contrast and low signal-to-noise ratio. Denoising using surface-based Laplace-Beltrami (LB) or volumetric Gaussian filtering tends to blur boundaries between different functional areas. To overcome this issue, a time-based Non-Local Means (tNLM) filtering method was previously developed to denoise fMRI data while preserving spatial structure.
View Article and Find Full Text PDFSevere chronic anemia is an independent predictor of overt stroke, white matter damage, and cognitive dysfunction in the elderly. Severe anemia also predisposes to white matter strokes in young children, independent of the anemia subtype. We previously demonstrated symmetrically decreased white matter (WM) volumes in patients with sickle cell disease (SCD).
View Article and Find Full Text PDFWe present a method for the statistical modeling of the displacements of wrist bones during the performance of coordinated maneuvers, such as radial-ulnar deviation (RUD). In our approach, we decompose bone displacement via a set of basis functions, identified via principal component analysis (PCA). We utilized MRI wrist scans acquired at multiple static positions for deriving these basis functions.
View Article and Find Full Text PDFMed Image Comput Comput Assist Interv
September 2018
Automatic computation of cortical thickness is a critical step when investigating neuroanatomical population differences and changes associated with normal development and aging, as well as in neurodegenerative diseases including Alzheimer's and Parkinson's. Limited spatial resolution and partial volume effects, in which more than one tissue type is represented in each voxel, have a significant impact on the accuracy of thickness estimates, particularly if a hard intensity threshold is used to delineate cortical boundaries. We describe a novel method based on the anisotropic heat equation that explicitly accounts for the presence of partial tissue volumes to more accurately estimate cortical thickness.
View Article and Find Full Text PDFMed Image Comput Comput Assist Interv
September 2018
Cross subject functional studies of cerebral cortex require cortical registration that aligns functional brain regions. While cortical folding patterns are approximate indicators of the underlying cytoarchitecture, coregistration based on these features alone does not accurately align functional regions in cerebral cortex. This paper presents a method for cortical surface registration (rfDemons) based on resting fMRI (rfMRI) data that uses curvature-based anatomical registration as an initialization.
View Article and Find Full Text PDFProc IEEE Int Symp Biomed Imaging
April 2018
Characterizing functional brain connectivity using resting fMRI is challenging due to the relatively small BOLD signal contrast and low SNR. Gaussian filtering tends to undermine the individual differences detected by analysis of BOLD signal by smoothing signals across boundaries of different functional areas. Temporal non-local means (tNLM) filtering denoises fMRI data while preserving spatial structures but the kernel and parameters for tNLM filter need to be chosen carefully in order to achieve optimal results.
View Article and Find Full Text PDF