Platelets play a crucial role in arterial thrombus formation, offering potential for new antiplatelet therapies with reduced bleeding risk. Here, we investigated the role of the renin-angiotensin system (RAS) in human platelets and explored its potential link to COVID-19 coagulopathy. Experiments were performed on healthy human platelets.
View Article and Find Full Text PDFExtracellular vesicles (EVs) are secreted by most cell types, transmitting crucial signaling molecules like proteins, small RNAs, and DNA. We previously demonstrated that EVs from murine and human mesenchymal stem cells (MSCs) functioned as senomorphics to suppress markers of senescence and the inflammatory senescence-associated secretory phenotype (SASP) in cell culture and in aged mice. Here we demonstrate that EVs from additional types of human adult stem cells and embryonic progenitor cells have a senomorphic activity.
View Article and Find Full Text PDFExpansion of adult stem cells in culture increases the percent of senescent cells, reduces their differentiation capacity and limits their clinical use. Here, we investigated whether treatment with certain senotherapeutic drugs would reduce the accumulation of senescent cells during expansion of human liver stem cells (HLSCs) while maintaining their differentiation capacity. Our results demonstrate that chronic treatment with the senomorphic XJB-5-131 or the senolytics cocktail D + Q reduced the number of senescent cells and significantly reduced the expression of senescence-associated genes and several inflammatory SASP factors in later passage HLSCs.
View Article and Find Full Text PDFAims: Diminazene aceturate, a putative ACE2 activator, is susceptible to cleavage resulting in the formation of p-aminobenzamidine (PAB). This study aimed to investigate the effects of PAB in addressing cardiovascular dysfunctions in spontaneously hypertensive rats (SHR).
Main Methods: Acute effects of PAB on mean arterial pressure (MAP), heart rate (HR), and aortic (AVC) and mesenteric vascular conductance (MVC) were evaluated in anesthetized SHR.
MicroRNAs (miRNAs) are potent regulators of multiple biological processes. Previous studies have demonstrated that miR-146a-5p increases in normal mice during aging, while long-living Ames dwarf (df/df) mice maintain youthful levels of this miRNA. The aim of this study was to elucidate the involvement of miR-146a-5p in modulating cellular senescence and apoptosis in visceral adipose tissue of df/df mice and cultured pre-adipocytes.
View Article and Find Full Text PDFJ Gerontol A Biol Sci Med Sci
August 2021
The Ames dwarf (df/df) mouse is a well-established model for delayed aging. MicroRNAs (miRNAs), the most studied small noncoding RNAs (sncRNAs), may regulate ovarian aging to maintain a younger ovarian phenotype in df/df mice. In this study, we profile other types of ovarian sncRNAs, PIWI-interacting RNAs (piRNAs) and piRNA-like RNAs (piLRNAs), in young and aged df/df and normal mice.
View Article and Find Full Text PDFReduced inflammation, increased insulin sensitivity, and protection against cancer are shared between humans and mice with GH/IGF1 deficiency. Beyond hormone levels, miRNAs are important regulators of metabolic changes associated with healthy aging. We hypothesized that GH deficiency in humans alters the abundance of circulating miRNAs and that a subset of those miRNAs may overlap with those found in GH-deficient mice.
View Article and Find Full Text PDFAging (Albany NY)
January 2020
The uterine fibrosis contributes to gestational outcomes. Collagen deposition in the uterus is related to uterine aging. Senolytic therapies are an option for reducing health complications related to aging.
View Article and Find Full Text PDFThe aim of this study was to investigate whether treatment with diminazene aceturate (DIZE), a putative ACE2 activator, or with angiotensin-(1-7) during pregnancy could attenuate the development of cardiovascular dysfunction in the adult offspring of spontaneously hypertensive rats (SHRs). For this, pregnant SHRs received DIZE or Ang-(1-7) throughout gestation. The systolic blood pressure (SBP) was measured in the male offspring from the 6th to16th weeks of age by tail-cuff plethysmography.
View Article and Find Full Text PDFIEEE Trans Nanobioscience
October 2019
We have showed that surface layer can determine cardiac effects of the magnetic nanoparticles (MNPs). Considering the high binding capacity of albumin and low side-effects, the aim of this study was to evaluate the influence of albumin coating on the cardiovascular effects of two manganese ferrite-based MNPs: citrate-coated and bare MNPs. Isolated rat hearts were perfused with citrate-coated magnetic nanoparticles (CiMNPs), citrate albumin-coated magnetic nanoparticles (CiAlbMNPs), bare magnetic nanoparticles (BaMNPs), and albumin-coated magnetic nanoparticles (AlbMNPs).
View Article and Find Full Text PDFPurpose: We designed a peptide, PnPP-19, comprising the potential active core of the Phoneutria nigriventer native toxin PnTx2-6. We investigated its role on erectile function, and its toxicity and immunogenicity.
Materials And Methods: Erectile function was evaluated by the intracavernous pressure-to-mean arterial pressure ratio during electrical field stimulation on rat pelvic ganglia.
Magnetic nanoparticles (MNPs) have been used for various biomedical applications. Importantly, manganese ferrite-based nanoparticles have useful magnetic resonance imaging characteristics and potential for hyperthermia treatment, but their effects in the cardiovascular system are poorly reported. Thus, the objectives of this study were to determine the cardiovascular effects of three different types of manganese ferrite-based magnetic nanoparticles: citrate-coated (CiMNPs); tripolyphosphate-coated (PhMNPs); and bare magnetic nanoparticles (BaMNPs).
View Article and Find Full Text PDF