Nanomedicine (Lond)
October 2021
We evaluated the impacts of corona protein (CP) formation on the alternating current biosusceptometry (ACB) signal intensity and circulation times of three differently coated magnetic nanoparticles (MNP): bare, citrate-coated and bovine serum albumin-coated MNPs. We employed the ACB system, gel electrophoresis and mass spectrometry analysis. Higher CP formation led to a greater reduction in the ACB signal intensity and circulation time.
View Article and Find Full Text PDFIR-780 iodide is a fluorescent dye with optical properties in the near-infrared region that has applications in tumor detection and photothermal/photodynamic therapy. This multifunctional effect led to the development of theranostic nanoparticles with both IR-780 and chemotherapeutic drugs such as docetaxel, doxorubicin, and lonidamine. In this work, we developed two albumin-based nanoparticles containing near-infrared IR-780 iodide multifunctional dyes, one of them possessing a magnetic core.
View Article and Find Full Text PDFPurpose: Noninvasive thermometry during magnetic nanoparticle hyperthermia (MNH) remains a challenge. Our pilot study proposes a methodology to determine the noninvasive intratumoral thermal dose during MNH in the subcutaneous tumor model.
Methods: Two groups of Ehrlich bearing-mice with solid and subcutaneous carcinoma, a control group ( = 6), and a MNH treated group ( = 4) were investigated.
This paper aims to investigate a doxorubicin (DOX) chronic kidney disease rat model using magnetic nanoparticles (MNPs) associated with the alternate current biosusceptometry (ACB) to analyze its different perfusion profiles in both healthy and DOX-injured kidneys. We used the ACB to detect the MNP kidney perfusion . Furthermore, we performed biochemical and histological analyses, which sustained results obtained from the ACB system.
View Article and Find Full Text PDFDelivery efficiencies of theranostic nanoparticles (NPs) based on passive tumor targeting strongly depend either on their blood circulation time or on appropriate modulations of the tumor microenvironment. Therefore, predicting the NP delivery efficiency before and after a tumor microenvironment modulation is highly desirable. Here, we present a new erythrocyte membrane-camouflaged magnetofluorescent nanocarrier (MMFn) with long blood circulation time (92 h) and high delivery efficiency (10% ID for Ehrlich murine tumor model).
View Article and Find Full Text PDFIEEE Trans Nanobioscience
October 2019
We have showed that surface layer can determine cardiac effects of the magnetic nanoparticles (MNPs). Considering the high binding capacity of albumin and low side-effects, the aim of this study was to evaluate the influence of albumin coating on the cardiovascular effects of two manganese ferrite-based MNPs: citrate-coated and bare MNPs. Isolated rat hearts were perfused with citrate-coated magnetic nanoparticles (CiMNPs), citrate albumin-coated magnetic nanoparticles (CiAlbMNPs), bare magnetic nanoparticles (BaMNPs), and albumin-coated magnetic nanoparticles (AlbMNPs).
View Article and Find Full Text PDFMetal-based nanoparticles (NPs) stimulate innate immunity; however, they have never been demonstrated to be capable of aiding the generation of specific cellular immune responses. Therefore, our objective was to evaluate whether iron oxide-based NPs have adjuvant properties in generating cellular Th1, Th17 and TCD8 (Tc1) immune responses. For this purpose, a fusion protein (CMX) composed of antigens was used as a subunit vaccine.
View Article and Find Full Text PDFBackground: We introduce and demonstrate that the AC biosusceptometry (ACB) technique enables real-time monitoring of magnetic nanoparticles (MNPs) in the bloodstream. We present an ACB system as a simple, portable, versatile, non-invasive, and accessible tool to study pharmacokinetic parameters of MNPs, such as circulation time, in real time. We synthesized and monitored manganese doped iron oxide nanoparticles in the bloodstream of Wistar rats using two different injection protocols.
View Article and Find Full Text PDFNon-invasive and real-time monitoring of the heat delivery during magnetic nanoparticle hyperthermia (MNH) is of fundamental importance to predict clinical outcomes for cancer treatment. Infrared thermography (IRT) can determine the surface temperature due to three-dimensional heat delivery inside a subcutaneous tumor, an argument that is supported by numerical simulations. However, for precise temperature determination, it is of crucial relevance to use a correct experimental configuration.
View Article and Find Full Text PDFWe describe the development of a joint in vivo/ex vivo protocol to monitor magnetic nanoparticles in animal models. Alternating current biosusceptometry (ACB) enables the assessment of magnetic nanoparticle accumulation, followed by quantitative analysis of concentrations in organs of interest. We present a study of real-time liver accumulation, followed by the assessment of sequential biodistribution using the same technique.
View Article and Find Full Text PDFMagnetic nanoparticles (MNPs) have been used for various biomedical applications. Importantly, manganese ferrite-based nanoparticles have useful magnetic resonance imaging characteristics and potential for hyperthermia treatment, but their effects in the cardiovascular system are poorly reported. Thus, the objectives of this study were to determine the cardiovascular effects of three different types of manganese ferrite-based magnetic nanoparticles: citrate-coated (CiMNPs); tripolyphosphate-coated (PhMNPs); and bare magnetic nanoparticles (BaMNPs).
View Article and Find Full Text PDFPurpose: Magnetic nanoparticle hyperthermia consists of an increase of the temperature of magnetic nanoparticles (heat centres) due to the interaction of their magnetic moments with an alternating magnetic field. In vivo experiments using this method usually use a few fibre-optic thermometers inserted in the animal body to monitor the heat deposition. As a consequence, only a few points of the 3D temperature distribution can be monitored by this invasive procedure.
View Article and Find Full Text PDFNanostructured magnetic systems have many applications, including potential use in cancer therapy deriving from their ability to heat in alternating magnetic fields. In this work we explore the influence of particle chain formation on the normalized heating properties, or specific loss power (SLP) of both low- (spherical) and high- (parallelepiped) anisotropy ferrite-based magnetic fluids. Analysis of ferromagnetic resonance (FMR) data shows that high particle concentrations correlate with increasing chain length producing decreasing SLP.
View Article and Find Full Text PDF