Publications by authors named "Ali Hamzah Alessa"

The study investigated the enhancement of stability and efficacy in the removal of bivalent nickel ions (Ni(II)) by utilizing a cerium metal-organic framework (Ce-MOF) encapsulated within a food-grade algal matrix. This composite material is integrated into a dual-layer hydrogel containing chitosan and carboxymethyl cellulose. The enhancement of structural integrity in the final product can be attributed to the cross-linking process with epichlorohydrin, leading to the development of Ce-MOF-FGA/CMC-CS hydrogel beads.

View Article and Find Full Text PDF

Ionic Polymer-Metal Composite (IPMC) actuators have garnered significant scientific attention in robotics and artificial muscles for their ability to operate at low voltage, high strain capacity, and lightweight construction. The lack of uniform bending in IPMC actuators undermines their control precision and restricts their range of potential applications. This study utilized the unique properties of nanoscale materials and Polyvinyl alcohol (PVA) to develop a membrane for soft robotic bending actuation.

View Article and Find Full Text PDF

In this paper, novel pyridines - were designed and synthesized via the one-pot, four-component reaction of 2-formylphenyl 4-tolylsulfonate with malononitrile, ammonium acetate, and phenols or 2-thioxo-1,3-thiazolidin-4-one or 6-aminopyrimidine-2,4(1,3)-dione under microwave irradiation in an aqueous solution of water and ethanol (1:1 ratio). The structures of new pyridines - were elucidated by elemental and spectral analyses such as IR, H NMR, and CNMR. This application has many advantages, such as having easy workup, eco-friendliness, reaction time being short (6-13 min), high production (94-98%), inexpensiveness, and avoiding the use of harmful solvents.

View Article and Find Full Text PDF

This scientific review documents the recent progress of C-spirooxindoles chemistry (synthesis and reaction mechanism) and their bioactivities, focusing on the promising results as well as highlighting the biological mechanism via the reported molecular docking findings of the most bioactive derivatives. C-Spirooxindoles are attractive bioactive agents and have been found in a variety of natural compounds, including alkaloids. They are widely investigated in the field of medicinal chemistry and play a key role in medication development, such as antivirals, anticancer agents, antimicrobials, etc.

View Article and Find Full Text PDF

Preparation, characterization, and investigation of a novel organic charge transfer (CT) complex were carried out, with a focus on exploring its antibacterial and antifungal characteristics. Theoretical analysis backs up the experimental findings. CT complex formed was synthesized between 8-hydroxyquinoline (8HQ) and oxalic acid (OA) at RT (room temperature).

View Article and Find Full Text PDF