Publications by authors named "Alfonso Alonso"

Plants cope with the environment by displaying large phenotypic variation. Two spectra of global plant form and function have been identified: a size spectrum from small to tall species with increasing stem tissue density, leaf size, and seed mass; a leaf economics spectrum reflecting slow to fast returns on investments in leaf nutrients and carbon. When species assemble to communities it is assumed that these spectra are filtered by the environment to produce community level functional composition.

View Article and Find Full Text PDF

Unlike most rivers globally, nearly all lowland Amazonian rivers have unregulated flow, supporting seasonally flooded floodplain forests. Floodplain forests harbor a unique tree species assemblage adapted to flooding and specialized fauna, including fruit-eating fish that migrate seasonally into floodplains, favoring expansive floodplain areas. Frugivorous fish are forest-dependent fauna critical to forest regeneration via seed dispersal and support commercial and artisanal fisheries.

View Article and Find Full Text PDF

We describe the geographical variation in tree species composition across Amazonian forests and show how environmental conditions are associated with species turnover. Our analyses are based on 2023 forest inventory plots (1 ha) that provide abundance data for a total of 5188 tree species. Within-plot species composition reflected both local environmental conditions (especially soil nutrients and hydrology) and geographical regions.

View Article and Find Full Text PDF
Article Synopsis
  • Accurately mapping tropical forests' aboveground biomass (AGB) is essential for effective carbon emission reduction and understanding the carbon cycle, yet existing maps often show inconsistent estimates.
  • To overcome this issue, the study focuses on creating high-quality reference AGB datasets using field plots and airborne LiDAR data from underrepresented regions in Central Africa and South Asia.
  • These reference maps, with detailed uncertainty information, will help enhance the accuracy of future Earth Observation missions and improve AGB mapping reliability.
View Article and Find Full Text PDF
Article Synopsis
  • Amazonia's floodplain system is the largest and most biodiverse, but our understanding of its forest species and their unique roles is still limited, especially as changing flood patterns impact these communities.
  • About one-sixth of the tree diversity in Amazonia is specifically adapted to live in floodplain environments, indicating a significant ecological specialization within these forests.
  • The study emphasizes that the unique composition of floodplain forests is influenced by regional flooding patterns, highlighting the necessity of maintaining overall hydrological health to ensure the survival of Amazon's tree diversity and its essential ecosystem functions.
View Article and Find Full Text PDF

Mycorrhizae, a form of plant-fungal symbioses, mediate vegetation impacts on ecosystem functioning. Climatic effects on decomposition and soil quality are suggested to drive mycorrhizal distributions, with arbuscular mycorrhizal plants prevailing in low-latitude/high-soil-quality areas and ectomycorrhizal (EcM) plants in high-latitude/low-soil-quality areas. However, these generalizations, based on coarse-resolution data, obscure finer-scale variations and result in high uncertainties in the predicted distributions of mycorrhizal types and their drivers.

View Article and Find Full Text PDF

Trees structure the Earth's most biodiverse ecosystem, tropical forests. The vast number of tree species presents a formidable challenge to understanding these forests, including their response to environmental change, as very little is known about most tropical tree species. A focus on the common species may circumvent this challenge.

View Article and Find Full Text PDF

Using 2.046 botanically-inventoried tree plots across the largest tropical forest on Earth, we mapped tree species-diversity and tree species-richness at 0.1-degree resolution, and investigated drivers for diversity and richness.

View Article and Find Full Text PDF

One mechanism proposed to explain high species diversity in tropical systems is strong negative conspecific density dependence (CDD), which reduces recruitment of juveniles in proximity to conspecific adult plants. Although evidence shows that plant-specific soil pathogens can drive negative CDD, trees also form key mutualisms with mycorrhizal fungi, which may counteract these effects. Across 43 large-scale forest plots worldwide, we tested whether ectomycorrhizal tree species exhibit weaker negative CDD than arbuscular mycorrhizal tree species.

View Article and Find Full Text PDF

Each fall, millions of monarch butterflies (Danaus plexippus L.) travel from Canada and the United States to overwinter in Mexico and California. In 2022, the IUCN listed migratory monarchs as endangered because of their population decline.

View Article and Find Full Text PDF
Article Synopsis
  • Indigenous societies have occupied the Amazon for over 12,000 years, but their impact on the forest is still not fully understood.
  • New LIDAR technology has helped discover 24 pre-Columbian earthworks hidden under the forest, suggesting many more archaeological sites may exist.
  • The presence of 53 domesticated tree species linked to these earthworks indicates past human management of the forest, highlighting the significant influence ancient societies had on Amazonian ecosystems.
View Article and Find Full Text PDF

In a time of rapid global change, the question of what determines patterns in species abundance distribution remains a priority for understanding the complex dynamics of ecosystems. The constrained maximization of information entropy provides a framework for the understanding of such complex systems dynamics by a quantitative analysis of important constraints via predictions using least biased probability distributions. We apply it to over two thousand hectares of Amazonian tree inventories across seven forest types and thirteen functional traits, representing major global axes of plant strategies.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigates how arbuscular mycorrhizal (AM) and ectomycorrhizal (EcM) associations influence tree diversity across different latitudes, using data from over 2.8 million trees.
  • AM trees were found to significantly contribute to reducing total tree diversity and turnover while enhancing nestedness at higher latitudes, contrasting with EcM trees that show less influence on compositional differences.
  • Environmental factors, especially temperature and precipitation, were more closely related to the beta-diversity patterns of AM trees, emphasizing the role of AM associations in maintaining global forest biodiversity.
View Article and Find Full Text PDF
Article Synopsis
  • Forest biomass plays a crucial role in the Earth's carbon cycle and is essential for climate change initiatives like REDD+, but there is uncertainty in measuring aboveground biomass (AGB) in tropical forests.
  • The new Congo basin Forests AGB (CoFor-AGB) dataset includes AGB estimates and uncertainties for nearly 60,000 1-km pixels, based on field data from extensive forest management inventories in central Africa between 2000 and the early 2010s.
  • The dataset reveals a large-scale view of AGB variations in central Africa, providing valuable data for addressing uncertainties in forest biomass measurements, which is critical for environmental research and climate action.
View Article and Find Full Text PDF

Amazonian forests are extraordinarily diverse, but the estimated species richness is very much debated. Here, we apply an ensemble of parametric estimators and a novel technique that includes conspecific spatial aggregation to an extended database of forest plots with up-to-date taxonomy. We show that the species abundance distribution of Amazonia is best approximated by a logseries with aggregated individuals, where aggregation increases with rarity.

View Article and Find Full Text PDF

Legumes provide an essential service to ecosystems by capturing nitrogen from the atmosphere and delivering it to the soil, where it may then be available to other plants. However, this facilitation by legumes has not been widely studied in global tropical forests. Demographic data from 11 large forest plots (16-60 ha) ranging from 5.

View Article and Find Full Text PDF
Article Synopsis
  • Population monitoring is vital for conservation efforts, especially for elusive species like African forest elephants, about which little is known regarding their population size and social behavior.
  • The study used genetic capture-recapture methods in Gabon to estimate the elephant population at 754 to 1,502 individuals, suggesting a much smaller population than previously thought, with a potential total of 3,033 to 6,043 across the Industrial Corridor.
  • Social network analysis indicated greater diversity in female social structures than expected, highlighting the complexity of forest elephant interactions and stressing the urgent need for improved population and behavior assessments as conservation threats escalate.
View Article and Find Full Text PDF

Forest biomass is an essential indicator for monitoring the Earth's ecosystems and climate. It is a critical input to greenhouse gas accounting, estimation of carbon losses and forest degradation, assessment of renewable energy potential, and for developing climate change mitigation policies such as REDD+, among others. Wall-to-wall mapping of aboveground biomass (AGB) is now possible with satellite remote sensing (RS).

View Article and Find Full Text PDF

Tropical forests are known for their high diversity. Yet, forest patches do occur in the tropics where a single tree species is dominant. Such "monodominant" forests are known from all of the main tropical regions.

View Article and Find Full Text PDF
Article Synopsis
  • Climate plays a crucial role in shaping biodiversity across different latitudes, but many studies overlook the distinction between direct and indirect effects of climate on biodiversity.
  • Research using data from 35 large forest plots shows that climate directly affects tree species richness, favoring warm and moist environments.
  • The findings suggest that climatic conditions not only directly limit species diversity but also promote greater species richness by supporting higher stem abundance and facilitating (co-)evolution in productive warm climates.*
View Article and Find Full Text PDF

Corridors are intended to increase species survival by abating landscape fragmentation resulting from the conversion of natural habitats into human-dominated matrices. Conservation scientists often rely on 1 type of corridor model, typically the least-cost model or current-flow model, to construct a linkage design, and their choice is not usually based on theory or empirical evidence. We developed a method to empirically confirm whether corridors produced by these 2 models are used by target species under current landscape conditions.

View Article and Find Full Text PDF

Chisholm and Fung claim that our method of estimating conspecific negative density dependence (CNDD) in recruitment is systematically biased, and present an alternative method that shows no latitudinal pattern in CNDD. We demonstrate that their approach produces strongly biased estimates of CNDD, explaining why they do not detect a latitudinal pattern. We also address their methodological concerns using an alternative distance-weighted approach, which supports our original findings of a latitudinal gradient in CNDD and a latitudinal shift in the relationship between CNDD and species abundance.

View Article and Find Full Text PDF

Hülsmann and Hartig suggest that ecological mechanisms other than specialized natural enemies or intraspecific competition contribute to our estimates of conspecific negative density dependence (CNDD). To address their concern, we show that our results are not the result of a methodological artifact and present a null-model analysis that demonstrates that our original findings-(i) stronger CNDD at tropical relative to temperate latitudes and (ii) a latitudinal shift in the relationship between CNDD and species abundance-persist even after controlling for other processes that might influence spatial relationships between adults and recruits.

View Article and Find Full Text PDF